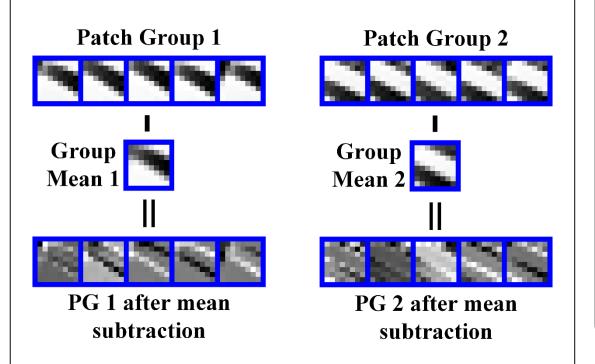
Patch Group Based Nonlocal Self-Similarity Prior Learning for Image Denoising Jun Xu¹, Lei Zhang¹, Wangmeng Zuo², David Zhang¹, Xiangchu Feng³

1 Department of Computing, Hong Kong Polytechnic University, Hong Kong, China 2 School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China 3 Department of Applied Mathematics, Xidian University, Xi'an, China

Motivation

The use of image nonlocal self-(NSS) similarity prior has significantly enhanced the denoising performance. However, most existing methods only exploit the NSS of input degraded images, while ignoring the NSS of clean natural images.



The formation of two patch groups (PG) sharing similar PG variations

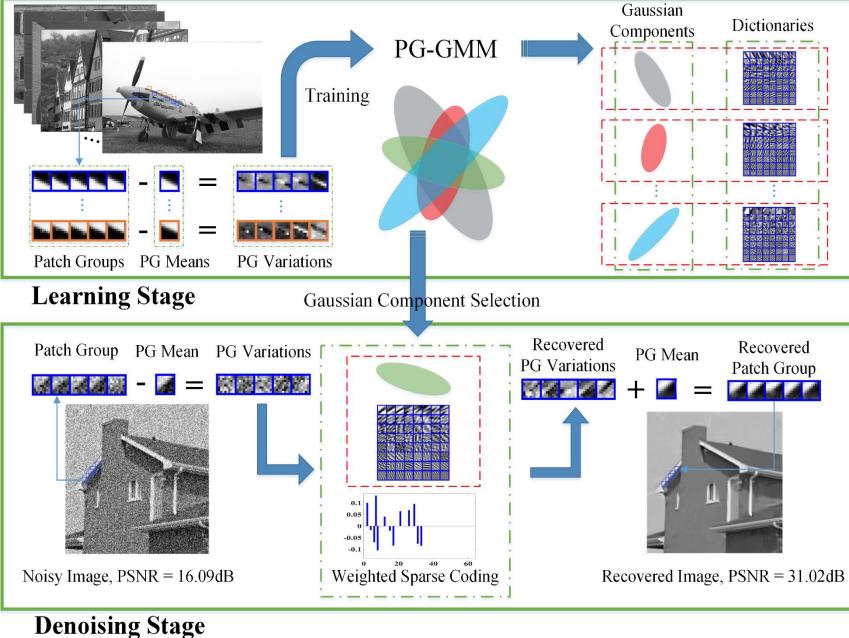
In this paper, we propose a patch group (PG) based NSS prior learning scheme to learn explicit NSS models from natural images for high performance denoising. The proposed PG Prior based Denoising (PGPD) algorithm is highly efficient, and effective in edge preservation.

Partial References

M. Elad and M. Aharon. Image denoising via sparse and redundant representations over learned dictionaries. Image Processing, IEEE Transactions on, 15(12):3736–3745, 2006.

A. Buades, B. Coll, and J. M. Morel. A non-local algorithm for image denoising. CVPR, pages 60–65, 2005.

The PGPD Method



	PSNR									
σ	BM3D	LSSC	EPLL	NCSR	WNN					
10	34.21	34.39	33.99	34.31	34.5					
20	30.95	31.03	30.75	30.95	31.2					
30	29.13	29.11	28.92	29.03	29.3					
40	27.69	27.80	27.62	27.71	28.0					
50	26.80	26.78	26.61	26.69	27.0					
75	25.04	24.90	24.81	24.79	25.3					
100	23.78	23.59	23.59	23.49	24.0					

Table 1. Average PSNR (dB) on 20 testing images by different methods.

D. Zoran and Y. Weiss. Natural images, Gaussian mixtures and dead leaves. NIPS, pages 1736–1744, 2012. G. Yu, G. Sapiro, and S. Mallat. Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity. Image Processing, IEEE Transactions on, 21(5):2481-2499, 2012.

Patch Group Based GMM

 $\ln \mathcal{L} = \sum_{n=1} \ln(\sum_{k=1} \pi_k \prod_{m=1} \mathcal{N}(\overline{\mathbf{x}}_{n,m} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k))$

Model Selection

$$P(k|\overline{\mathbf{Y}}) = rac{\prod_{m=1}^{M} \mathcal{N}(\overline{\mathbf{y}}_m | \mathbf{0}, \mathbf{\Sigma}_k + \sigma^2 \mathbf{I})}{\sum_{l=1}^{K} \prod_{m=1}^{M} \mathcal{N}(\overline{\mathbf{y}}_m | \mathbf{0}, \mathbf{\Sigma}_l + \sigma^2 \mathbf{I})}$$

Weighted Sparse Coding With Closed-form **Solution**

$$\min_{\boldsymbol{\alpha}} \| \overline{\mathbf{y}}_m - \mathbf{D} \boldsymbol{\alpha} \|_2^2 + \| \mathbf{w}^T \boldsymbol{\alpha} \|_1$$

 $\hat{\boldsymbol{\alpha}} = \operatorname{sgn}(\mathbf{D}^{\mathrm{T}} \overline{\mathbf{y}}_{m}) \odot \max(|\mathbf{D}^{\mathrm{T}} \overline{\mathbf{y}}_{m}| - \mathbf{w}/2, 0)$

Sneed

		Opeca						
PG	BPD	σ	BM3D	LSSC	EPLL	NCSR	WNNM	PGPD
34	.19	10	0.67	186.90	38.47	126.43	84.34	8.00
30	.95	20	0.70	184.21	38.47	156.14	84.70	8.09
29	.13	30	0.70	212.07	38.55	149.31	155.75	8.47
27	.88	40	0.67	209.13	38.51	346.91	157.35	9.80
26	6.89	50	0.87	221.36	40.21	326.93	119.47	9.91
25	5.11	75	0.89	240.75	40.91	258.04	179.30	11.73
23	.85	100	0.90	257.25	42.80	252.74	191.32	11.78
				_				

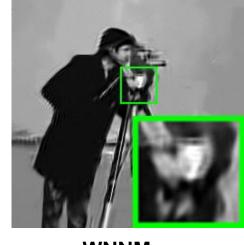
Table 2. Running time (sec.) of different methods to process a 256 x 256 image.

J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan. Sparse D. Zoran and Y.Weiss. From learning models of natural image representation for computer vision and pattern recognition. Proceedings of the IEEE, 98(6):1031–1044, 2010.

K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by W. Dong, L. Zhang, G. Shi, and X. Li. Nonlocally centralized sparse 3-D transform-domain collaborative filtering. Image Processing, IEEE Transactions on, 16(8):2080–2095, 2007.

patches to whole image restoration. ICCV, pages 479–486, 2011.

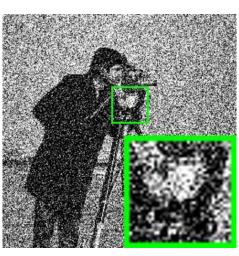
sparse representation for image restoration. Image Processing, IEEE Transactions on, 22(4):1620–1630, 2013.



WNNM

Ground Truth

BM3D



Noisy Image



LSSC

EPLL

NCSR

PGPD

S. Gu, L. Zhang, W. Zuo, and X. Feng. Weighted nuclear norm minimization with application to image denoising. CVPR, pages 2862–2869, 2014.

J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman. Non-local sparse models for image restoration. ICCV, pages 2272-2279, 2009.