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Abstract. Most existing image denoising methods assume to know the noise
distributions, e.g., Gaussian noise, impulse noise, etc. However, in practice the
noise distribution is usually unknown and is more complex, making image de-
noising still a challenging problem. In this paper, we propose a novel blind image
denoising method under the Bayesian learning framework, which automatically
performs noise inference and reconstructs the latent clean image. By utilizing the
patch group (PG) based image nonlocal self-similarity prior, we model the PG
variations as Mixture of Gaussians, whose parameters, including the number of
components, are automatically inferred by variational Bayesian method. We then
employ nonparametric Bayesian dictionary learning to extract the latent clean
structures from the PG variations. The dictionaries and coefficients are automat-
ically inferred by Gibbs sampling. The proposed method is evaluated on images
with Gaussian noise, images with mixed Gaussian and impulse noise, and real
noisy photographed images, in comparison with state-of-the-art denoising meth-
ods. Experimental results show that our proposed method performs consistently
well on all types of noisy images in terms of both quantitative measure and visual
quality, while those competing methods can only work well on the specific type
of noisy images they are designed for and perform poorly on other types of noisy
images. The proposed method provides a good solution to blind image denoising.

1 Introduction

Image denoising is an important problem in image processing and computer vision.
Most existing methods are designed to deal with specific types of noise, e.g., Gaus-
sian noise, mixed Gaussian and impulse noise, etc. Gaussian noise removal is a funda-
mental problem and has received intensive research interests with many representative
work [1–8]. Gaussian noise removal is not only an independent task but also can be
incorporated into other tasks, e.g., the removal of mixed Gaussian and impulse noise.
The ’first-impulse-then-Gaussian’ strategy is commonly adopted by methods of [9–11],
which are designed specifically for mixed Gaussian and impulse noise. However, noise
in real images is more complex than simple Gaussian or mixed Gaussian and impulse
distribution. Besides, noise is usually unknown for existing methods. This makes image
denoising still a challenging problem.

To the best of our knowledge, the study of blind image denoising can be traced
back to the BLS-GSM model [12]. In [12], Portilla et al. proposed to use scale mixture
?? This work is supported by the HK RGC GRF grant (PolyU5313/12E).
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of Gaussian in overcomplete oriented pyramids to estimate the latent clean images. In
[13], Portilla proposed to use a correlated Gaussian model for noise estimation of each
wavelet subband. Based on the robust statistics theory [14], Rabie modeled the noisy
pixels as outliers, which could be removed via Lorentzian robust estimator [15]. Liu
et al. proposed to use ’noise level function’ (NLF) to estimate the noise and then use
Gaussian conditional random field to obtain the latent clean image [16]. Recently, Gong
et al. proposed an optimization based method [17], which models the data fitting term
by weighted sum of `1 and `2 norms and the regularization term by sparsity prior in the
wavelet transform domain. Later, Lebrun el al. proposed a multiscale denoising algo-
rithm called ’Noise Clinic’ [18] for blind image denoising task. This method generalizes
the NL-Bayes [19] to deal with signal and frequency dependent noise.

Despite the success of these methods, they have many limitations. On one hand, as
suggested in [16, 18], Gaussian noise, assumed by [13, 15, 16], may be inflexible for
more complex noise in real images. Hence, better approximation to the noise could
bring better image denoising performance [16, 18]. On the other hand, the method [17]
needs tune specific parameters for different types of noise. This makes the proposed
method not a strictly ”blind” image denoising. Based on these observations, it is still
needed to design an robust and effective model for blind image denoising. Few assump-
tion and no parameter tuning would bring extra points.

In this paper, we propose a new method for blind image denoising task. The key
factor of success is to employ the Mixture of Gaussian (MoG) model to fit the patches
extracted from the image. Since the noise in real image is unknown, we utilize vari-
ational Bayesian inference to determine all the parameters, including the number of
components. That is, the noise is modeled by a MoG adapted to the testing image.
This data driven property makes our model able to deal with blind noise. Then we em-
ploy the nonparametric Bayesian model [20] to reconstruct the latent clean structures in
each component. Specificly, the beta-Bernoulli process [21, 22] is suitable for this task.
In our proposed method, the noise in each component is assumed to be Gaussian. The
parameters of the beta-Bernoulli process are automatically determined by nonparamet-
ric strategies such as the Gibbs sampling. The proposed model is tested on Gaussian
noise, mixed Gaussian and impulse noise,and real noise in photographed images.

To summarize, our paper has the following contributions:
– We proposed a noval framework for blind image denoising problem;
– The proposed model is more robust on image denoising tasks than the competing

methods;
– We demonstrated that, the performance of the Beta Process Factor Analysis (BPFA)

model can be largely improved by structural clustering strategy and Non-local self
similarity property;

– We achieve comparableor even better performance on blind image denoising tasks
than the competing methods.

The remainder of this paper is organized as follows. Section II introduces the related
workd. Section III introduces the patch group based Mixture of Gaussian model infered
by variational Bayesian method. In section IV, we will formulate the proposed PG based
nonparametric Bayesian dictionary learning model. Section V summarizes the overall
algorithm. In section VI, we will present the experimental results, as well as discussions,
on blind image denoising tasks. Section VII concludes this paper.
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2 Related Work

Structural clustering are employed by many image denoising methods. For exam-
ple, both EPLL [7] and PLE [23] utilized the Mixture of Gaussian (MoG) model [24]
for clustering similar patches. NCSR [25] utilized the k-means algorithm. The recently
proposed Patch Group Prior based Denoising (PGPD) [26] employ the MoG model to
learn the non-local self-similarity (NSS) prior of images. However, all these methods
need preset the number of clusters. In [27], the Beta-Bernoulli Factor Analysis (BPFA)
model is further extended by nonparametric clustering processes such as Dirichlet pro-
cess (DP) [28] or probit stick-breaking processes (PSBP) [29]. However, the authors in
[27] pointed out that, the resulting ’clustering-aided’ models achieved similar perfor-
mance on image denoising to the original BPFA model [27]. In this paper, we demon-
strate that, we could indeed improve the performance of Bayesian methods on image
denoising tasks, if we utilize the structural clustering strategy properly.

Dictionary learning is very useful for image denoising tasks. The dictionary can
be chosen off-the-shelf (wavelets and curvelets) or can be learned from natural image
patches. The seminal work of K-SVD [4] has demonstrated that dictionary learning not
only can help achieves promising denoising performance, but also can be used in other
image processing applications. In image denoising, dictionary learning is commonly
combined with the non-local self-similarity (NSS) prior [2, 26], sparse prior [5, 6, 25],
and low rank prior [30], etc. Though work well on Gaussian noise removal, the above
methods perform poorly on other types of noises, especially noise in real noisy images.

3 Patch Group based Bayesian Learning for Structural Clustering

3.1 Patch Group based Non-local Self Similarity Property

Non-local self similarity (NSS) is a common image prior employed by many image
restoration methods [2, 5, 6, 25, 30, 26]. In PGPD [26], the patch group (PG) based NSS
prior is learned on clean natural images for efficient image denoising. In this paper,
however, we apply the PG based NSS prior directly on testing noisy images. Given a
noisy image, we firstly extract image patches of size p× p. Then, for each image patch,
we find theM most similar patches to it in a large enough local window of sizeW×W .
The similarity measurement is based on Euclidean distance, i.e., `2 norm, which is
commonly used in other methods [5, 6, 25, 30, 26]. In this work, we set p = 8, M = 6,
W = 31. The PG is a set of similar patches {xm}Mm=1, in which the xm ∈ Rp2×1 is
the mth patch vector. The group mean of this PG is µ = 1

M

∑M
m=1 xm. The mth group

mean subtracted patch vector is xm = xm − µ. The X , {xm}, m = 1, ...,M is
called the PG variations. In Figure 1, we show one example of PG, PG mean, and the
PG variations after group mean subtraction. The PG mean is the main structure of this
PG. Here, we proposed to embed this idea into the BPFA model [27] and compare the
performance on the Gaussian noise removal. The results are listed in Figure 2. When
comparing the images (b) and (d), we can see that the introduce of PG based NSS
prior can really boost the performance on image denoising of the BPFA model. The
improvements on PSNR is nearly 0.8dB and on SSIM is nearly 0.03. In particular, the
image quality in (d) is much better than that in (b).
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Fig. 1. An example of PG, PG mean (duplicated by five), and PG variations after mean
subtraction. The PG is from the image ’House’ corrupted by Gaussian noise.

(a) Ground Truth (b) BPFA
(27.23dB/0.7775)

(c) Ours:
C=32,M=1

(27.42dB/0.7873)

(d) Ours:
C=1,M=6

(28.00dB/0.8072)

(e) Ours:
C=32,M=6

(28.40dB/0.8305)

Fig. 2. Denoised images of Barbara and PSNR/SSIM results by BPFA and our models
(the standard deviation of Gaussian noise is σ = 40).

3.2 PG based Bayesian Learning for Structural Clustering

Given a noisy image, we can extracted N PG variations, the m-th variation in the n-th
PG is defined as xn,m, where n = 1, ..., N and m = 1, ...,M . We propose to utilize
Mixture of Gaussian (MoG) with C components, to divide the sundry PG variations
into different clusters. The relationship between PG variation xn,m and the MoG model
relies on a latent variable defined as zn,m, which is consisted of C elements zn,m,c

for c = 1, ..., C. If PG variation xn,m belongs to the cth component, zn,m,c = 1; and
otherwise zn,m,c = 0. A natural problem is how to determineC, the number of clusters,
as well as other parameters in the MoG model. A reliable solution is to initialize C as a
large number and then employ the Dirichlet prior to estimate it [24].

In order to fully estimate the parameters of the MoG model, we can resort to the pos-
terior distribution p({zn,m}|{xn,m}) given {zn,m} (n = 1, ..., N and m = 1, ...,M ).
Though its analytical form is not computationally tractable, we could use variational
Bayesian inference as an approximational technique. Assuming that the mixing coeffi-
cients vector is π, the conditional distribution of the latent variables {zn,m} is

p({zn,m}|π) =
N∏

n=1

M∏
m=1

C∏
c=1

πzn,m,c
c . (1)

The conditional distribution of the PG variations is

p({xn,m}|{zn,m}, {µc}, {Σc}) =
N∏

n=1

M∏
m=1

C∏
c=1

N (xn,m|µc,Σc)
zn,m,c (2)

where µc and Σc are the corresponding mean vector and covariance matrix of the c-th
component of the MoG model. After introducing corresponding priors over the param-
eters {zn,m}, {µc} and {Σc}, we can write the joint distribution of all the variables by

p({xn,m}, {zn,m},π, {µc}, {Σc}) = p({xn,m}|{zn,m}, {µc},
{Σc})× p({zn,m}|π)× p(π)× p(µc|Σc)× p({Σc}),

(3)
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where the mixing coefficients vector π is assumed to follow Dirichlet distribution.
Finally, we can perform variational maximization (M step) and expectation esti-

matation of the responsibilities (E step) alternatively. By taking suitable parameters
for the equation 3, we can re-write the lower bound as a function of the parame-
ters. This lower bound can be used to determine the posterior distribution over the
number of components C in the MoG model. Please refer to [24] for more details.
We use the Matlab code implemented in Pattern Recognition and Machine Learning
Toolbox http://www.mathworks.com/matlabcentral/fileexchange/
55826-pattern-recognition-and-machine-learning-toolbox.

3.3 Discussion

Based on above description, we discuss as follows the advantages of the proposed model
for PG based modeling directly on noisy images: Firstly, all the parameters of the pro-
posed model are automatically estimated from the noisy image via variational Bayesian
inference. This is a major advantage over PGPD [26]. Secondly, we demonstrated that
structural clustering can indeed boost the performance of Bayesian methods such as
BPFA [27]. This is demonstrated in the images (b) and (c) of Figure 2. Thirdly, the
Non-local Self Similarity prior can be used to improve the performance of BPFA [27].
This can be demonstrated by comparing the images ((b), (c), (e)) or ((b), (d), (e)).

4 Patch Group based Bayesian Dictionary Learning

4.1 Truncated beta-Bernoulli Process for Dictionary Learning
Once we have clustered similar PG variations into different components, we can extract
the latent clean PG variations using sparse or low rank image priors. These priors are
also frequently employed by many state-of-the-art methods [5–7, 25, 30, 26] for image
restoration tasks. We do not fixed the number of atoms in the dictionary learning. This
is different from the previous methods, including PGPD. Instead, we set a large number
K, which makes our Bayesian model a truncated beta-Bernoulli process. We employ
the beta-Bernoulli process [20–22] to seek the sparse priors on infinite feature space.

In this paper, we express noisy PG variations X as
X = DW + V, (4)

where X ∈ Rp2×M , the coefficients vector W ∈ RK×M , and the noise term V ∈
Rp2×M . The matrix D ∈ Rp2×K contains K dictionary atoms. The coefficients matrix
W is represented by W = B � S. The matrices B,S ∈ RK×M are the binary matrix
and the coefficients matrix, respectively and � is the element-wise product. We denote
x as any column of the PG variations X and w,b ∈ {0, 1}K , and s as corresponding
columns of the coefficients matrix W, the binary matrix B, and the coefficients matrix
S. We denote {dk}Kj=1 as columns of the dictionary D, {sj}nj=1 as columns of S, and
{vj}nj=1 as columns of the noise matrix V. Each column w is represented by a binary
vector b ∈ {0, 1}K and a coefficient vector s ∈ RK×1, i.e., w = b � s. Then we can
impose suitable priors on these parameters, i.e., b, {dk}Kk=1, {sk}Kk=1, and {vj}nj=1.
The binary vector b ∈ {0, 1}K denotes which of the columns (or atoms) in D are
used for the representation of x. At beginning, we do not know the suitable K. We
can set K → ∞ and impose sparse prior on b ∈ {0, 1}K to limit the number of
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atoms in D used for representing each PG variation x extracted from noisy images.
The beta-Bernoulli process [20–22] provides a convenient way for this purpose. For
inference convenience, we impose independent Gaussian priors on {dk}Kk=1, {sk}Kk=1,
and {vj}nj=1.

The dictionary learning model for PG variations is
X = DW + V,W = B� S, (5)

where � is element-wise product. The beta-Bernoulli process [22] for binary vector is:

b ∼
K∏

k=1

Bernoulli(πk),π ∼
K∏

k=1

Beta(
a

K
,
b(K − 1)

K
), (6)

dk ∼ N (0, P−1IP ), sj ∼ N (0, γ−1
s IK),vj ∼ N (0, γ−1

v IP ), (7)
γs ∼ Gamma(c, d), γv ∼ Gamma(e, f), (8)

where {a, b}, {c, d}, {e, f} are the corresponding hyper parameters of the parameters
π, γs, and γv in the conjugate hyper priors in equations (6), (8). The inference proce-
dures we take for the Bayesian model is Gibbs sampling [31] and we ignore the pro-
cedures here. As we can see, the noise estimation is integrated into the overall model
in Gibbs samppling process. That is th reason why the proposed algorithm can be used
to deal with blind noise. This is also different from the other non-blind image denois-
ing methods [2, 5–7, 25, 30, 26], since they do not have the ability to estimate the noise
within the noisy images.

We compare the proposed model with the BPFA model on the dictionary elements.
With the help of PG based NSS prior and structural clustering, the dictionary learned by
the proposed model is more representative and discriminative than that learned by the
BPFA model [27]. Take the image ”Barbara” for an example, it is corrupted by Gaussian
noise with σ = 40. The initial number of dictionary elements is 512 for both methods.
In Figure 2 (a), we demonstrate the dictionary elements learned by the BPFA model
[27]. In the (b), (c), and (d) of Figure 2, we demonstrate the dictionary elements of
three components learned by the proposed method. Noted that the BPFA learned from
the original patches while the proposed method learned from patch group variations.
It can be seen that these dictionary elements express the latent clean structures of the
noisy PG variations in this component. For different Gaussian components, we can
see that the number of elements are automatically determined by the nonparametric
Bayesian inference. The dictionary elements in the subfigures (a) to (d) in Figure 3 are
supplemented by black patches to make sure that these subfigures are square.

(a) (b) (c) (d)

Fig. 3. The dictionary elements learned by the BPFA model ((a)) and the proposed
method ((b), (c), and (d)).
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Algorithm 1: The Overall Algorithm
Input: Noisy image y, a = b = 1, c = d = e = f = 10−6

1. Extract non-local similar patch groups {X};
2. For each PG, calculate its mean µx and form PG variations X;
3. Estimate the parameters in MoG model via variational Bayesian inference;
4. for each cluster
5. for t = 1 : IteNum do Gibbs Sampling:
6. Sample b from equation (6)
7. Sample dk ∼ N (0, P−1IP )
8. Sample sj ∼ N (0, γ−1

s IK , γs ∼ Gamma(c, d)
9. Sample vj ∼ N (0, γ−1

v IP ), γv ∼ Gamma(e, f)
10. end for
11. Recover each patch group via X̂ = DW + µx;
12. end for
13. Average the recovered patch groups to form the recovered image ŷ;
14. Output: The recovered image ŷ.

4.2 Discussion

Our method are different from the method of BPFA [27]. Basicly, our model learns
flexible number of dictionary atoms on patch groups while BPFA fixs the number of
dictioary atoms learned over patches. This modification makes the dictionary more rep-
resentative and discriminative than those in BPFA [27]. What’s more, BPFA is only
applied in (non-blind) denoising Gaussian noise while our model is applied to (blind)
denoising multiple noises such as Gaussian noise, mixed Gaussian and impulse noise,
and real noise. This will be demonstrated in the experimental section.

5 Summary of The Overall Algorithm

The overall algorithm is consisted of three parts. The first is the PG based Bayesian
learning for automatically estimating the parameters of the MoG model, including the
number of components. After the clustering, we employ a divide-and-conquer strat-
egy. The second part is, for each component, we employ the PG based nonparametric
Bayesian dictionary learning to sample the dictionary D as well as coefficients matrix
W. Then, the final denoised PG variations is simply calculated as X̂ = DW. That
is the key factor why the proposed algorithm is able to deal with blind image denois-
ing. After this is done for each component, the third part is to recover the denoised
image by aggregating the denoised PGs. The overall algorithm is summarized in Al-
gorithm 1. The Matlab source code of our algorithm can be downloaded at http:
//www4.comp.polyu.edu.hk/˜csjunxu/code/PGBL_BID.zip.

6 Experiments

In this section, we perform image denoising experiments on various types of noise, in-
cluding synthetic noise and real noise in real world images. The synthetic noise includes
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Fig. 4. The 20 widely used test images.

additive white Gaussian noise (AWGN), mixed Gaussian and random value impulse
noise (RVIN). The synthetic image denoising experiments are performed on 20 widely
used natural images listed in Figure 4. In the synthetic noise removal experiments, we
compare the proposed method with other state-of-the-art methods such as [27, 5, 26, 30,
9, 11, 18]. The BPFA [27] BM3D [5], PGPD [26], and WNNM [30] are designed espe-
cially for Gaussian noise removal. The Two Phase [9] and WESNR [11] are designed
especially for mixed Gaussian and impulse noise removal. The ”Noise Clinic” method
[18] is designed especially for real noise removal. It is a state-of-the-art blind denois-
ing method. We evaluate all these methods on PSNR, SSIM [32], and visual quality.
On real noise removal, besides the above methods, we also compare with the commer-
cial software Neat Image [33]. This software is embeded in Photoshop CS, a famous
commercial software for image processing. The codes or executive package of these
methods are provided on the corresponding websites. Since there is no ground truth in
real noise removal, we only compare the visual quality of the recovered images by these
methods.

6.1 Implementation Details

For the BM3D [5], WNNM [30], and PGPD [26], the input standard derivation of the
noise is a key parameter. We employ a robust noise estimation method [34] to esti-
mate the noise standard derivation for these methods. The methods Two Phase [9] and
WESNR [11] do not need the noise level as input when performing denoising tasks.
But they need some preprocessing for the noise removal tasks. However, our proposed
method doesn’t need noise estimation nor image preprocessing.

In the proposed method, we set the initial number of components C as 32. The
final number of components will be automatically determined by variational Bayesian
inference introduced in section 2. The patch size is fixed as 8 × 8, so the dimension
of each patch vector is 64. The number of dictionary atoms K is set to be 256 when
number of PG variations in this component is less than 104, otherwise the number is
set to 512. The hyperparameters are fixed as a = b = 1, c = d = e = f = 10−6 in
all the experiments. We do not tune these paramters in our experiments. The number of
patches in a group is set to 6. We set the maximal iteration number as 10. The IteNum
is set as 50. The proposed algorithm will be terminated when the noise variance of each
component is less than or equal to 1.

6.2 Additive White Gaussian Noise Removal

Here, we compare the proposed method on Gaussian noise removal with other com-
peting methods: BPFA [27], BM3D [5], and PGPD [26], WNNM [30], Two Phase [9],
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WNSER [11], Noise Clinic [18]. As a common experimental setting, we add additive
white Gaussian noise with zero mean and standard deviation σ to the test images. The
denoising experiments are performed on multiple noise levels of σ = 30, 40, 50, 75.

The averaged results on PSNR and SSIM are listed in Tables 1 and 2. We can see
that the PSNR and SSIM results of our proposed method are much better than the
BPFA, Two Phase, and WESNR, Noise Clinic methods. The results of the proposed
method are comparable to BM3D when the noise levels are higher than 30. Though
getting inferior results on PSNR and SSIM when compared to WNNM and PGPD, the
proposed method can achieve similar or even better performance when compared with
other methods. For instance, from Figure 4 and Figure 5, we can see that the proposed
method generates better image quality and less artifacts on the image ”House” and
”Hill” than the other methods. Considering that the proposed method is fully blind, it is
more convincing to see that our proposed method achieves better image quality results
than the Noise Clinic [18], which is a state-of-the-art blind image denoising method.
We want to mention again that BM3D, PGPD, and WNNM can only work well on the
Gaussian noise, which they are designed for, but perform poorly on other types of noise,
which will be demonstrated later.

Table 1. Average PSNR(dB) results of different algorithms on 20 natural images cor-
rupted by Gaussian noise.

σ BPFA BM3D WNNM PGPD Two Phase WESNR Noise Clinic Ours
30 28.81 29.11 29.35 29.13 18.84 27.44 26.81 28.65
40 27.45 27.68 28.03 27.88 16.52 25.07 24.90 27.59
50 26.38 26.80 27.06 26.89 14.80 22.02 23.47 26.68
75 24.40 25.04 25.25 25.11 11.95 9.02 21.31 24.91

Table 2. Average SSIM results of different algorithms on 20 natural images corrupted
by Gaussian noise.

σ BPFA BM3D WNNM PGPD Two Phase WESNR Noise Clinic Ours
30 0.7988 0.8108 0.8156 0.8089 0.3137 0.7430 0.6520 0.7971
40 0.7576 0.7706 0.7784 0.7747 0.2361 0.6063 0.5631 0.7668
50 0.7216 0.7430 0.7510 0.7435 0.1855 0.4483 0.4990 0.7382
75 0.6470 0.6803 0.6897 0.6825 0.1147 0.1749 0.4289 0.6766

6.3 Mixed Gaussian and Impulse Noise Removal

Here, we compare the proposed method on mixed Gaussian and impulse noise with the
compared methods [27, 5, 26, 30, 9, 11, 18]. We consider Random Value Impulse Noise
(RVIN) here. The pixels in the testing image corrupted by RVIN is distributed between
0 and 255. This is much harder than salt and pepper noise, which is only 0 or 255 values.
In the synthetic noise, the standard derivations of the Gaussian noise are σ = 10, 20 and
the ratios of the impulse noise are 0.15, 0.30, respectively. The RVIN noise is generated
by the ”impulsenoise” function used by WESNR [11].
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(a) Ground Truth (b) Noisy Image
(16.30dB/0.1701)

(c) BPFA
(29.75dB/0.8048)

(d) BM3D
(30.63dB/0.8231)

(e) PGPD
(31.02dB/0.8302)

(f) WNNM
(31.19dB/0.8279)

(g) Two Phase
(16.30dB/0.1701)

(h) WESNR
(27.27dB/0.6076)

(i) Noise Clinic
(26.48dB/0.5370)

(j) Ours
(30.90dB/0.8328)

Fig. 5. Denoised images of House and PSNR/SSIM results by different methods (the
standard deviation of Gaussian noise is σ = 40).

(a) Ground Truth (b) Noisy Image
(14.68dB/0.1357)

(c) BPFA
(26.81dB/0.6530)

(d) BM3D
(27.19dB/0.6745)

(e) PGPD
(27.22dB/0.6702)

(f) WNNM
(27.34dB/0.6772)

(g) Two Phase
(14.68dB/0.1357)

(h) WESNR
(23.50dB/0.4218)

(i) Noise Clinic
(25.01dB/0.5128)

(j) Ours
(27.02dB/0.6618)

Fig. 6. Denoised images of Hill and PSNR/SSIM results by different methods (the stan-
dard deviation of Gaussian noise is σ = 50).
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For BPFA [27], BM3D [5], and PGPD [26], WNNM [30], they are designed to
deal with Gaussian noise. Hence, we still employ the noise estimation method [34]
to estimate the noise levels σ. We also compare the proposed method with the methods
Two Phase [9] and WESNR [11], which are designed especially for the mixed Gaussian
and RVIN noise. Noted that both Two Phase [9] and WESNR [11] employ Adaptive
Median Filter (AMF) [35] to preprocess the image before performing image denoising
task. We also compare with the Noise Clinic [18].

The results on PSNR and SSIM are listed in Table 3 and Table 4. As we can see,
the performance of the proposed method is comparable or better than other methods.
For the visual quality comparison, the proposed method can generate better results than
other methods. Take the image ”Couple” for an example, from the Figure 7, the pro-
posed method removes the noise clearly while all other methods remain some noise
or generate some artifacts. From the results on ”Barbara” listed in Figure 8, the pro-
posed method achieves higher SSIM and generates better image quality than all other
methods. We have to mention again that the Two Phase and WESNR are two state-of-
the-art methods designed especially for the mixed Gaussian and impulse noise. But they
perform poorly on other types of noises such as Gaussian.

Table 3. Average PSNR(dB) results of different algorithms on 20 natural images cor-
rupted by mixed of Gaussian and RVIN noise.

σ, Ratio BPFA BM3D WNNM PGPD Two Phase WESNR Noise Clinic Ours
10, 0.15 17.12 25.18 22.98 25.41 27.28 27.37 18.66 27.17
10, 0.30 14.19 21.80 21.40 21.74 26.12 21.50 16.44 22.17
20, 0.15 17.62 25.13 23.57 25.33 24.43 27.24 19.66 26.12
20, 0.30 17.61 21.73 21.40 21.64 23.61 22.69 14.46 21.89

Table 4. Average SSIM results of different algorithms on 20 natural images corrupted
by mixed of Gaussian and RVIN noise.

σ, Ratio BPFA BM3D WNNM PGPD Two Phase WESNR Noise Clinic Ours
10, 0.15 0.2749 0.7037 0.5806 0.7242 0.7091 0.7499 0.3198 0.7459
10, 0.30 0.1576 0.6444 0.6038 0.6405 0.6783 0.4970 0.2042 0.6559
20, 0.15 0.2821 0.7132 0.6190 0.7220 0.5468 0.7568 0.3423 0.7312
20, 0.30 0.2821 0.6414 0.6310 0.6371 0.5183 0.5871 0.1346 0.6470

6.4 Real Noisy Image Denoising
In this section, we will test the proposed method on real noise removal. Since the
color images are in RGB channels, we firstly transform the color images into YCbCr
channels, then perfrom denoising on the Y channel, and finally transform the denoised
YCbCr channel image back into RGB channels. The denoised images are cropped to
size of 800 × 600 for better visualization. We do not compare with WNNM [30] and
Two Phase [9] here since they achieve worse denoising quality than the other methods
such as BM3D [5], WESNR [11], and Noise Clinic [18]. For BM3D and PGPD, the
input noise level σ is still estimated by [34]. We also compare with the Neat Image
[33], a commercial software embedded in Photoshop CS. In this paper, we take three
real noisy images for examples, which are ”SolvayConf1927”, ”Girls”, and ”Windmill”.
The image ”SolvayConf1927” is an old image provided by the Noise Clinic website on
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(a) Ground Truth (b) Noisy Image
(17.35dB/0.2852)

(c) BPFA
(17.80dB/0.2871)

(d) BM3D
(25.70dB/0.7126)

(e) PGPD
(25.75dB/0.7208)

(f) WNNM
(23.81dB/0.6162)

(g) Two Phase
(27.47dB/0.7186)

(h) WESNR
(28.40dB/0.7807)

(i) Noise Clinic
(19.48dB/0.3378)

(j) Ours
(27.26dB/0.7438)

Fig. 7. Denoised images of Couple by different methods (the mixed Gaussian and Ran-
dom Value Impulse Noise is with σ = 10 and ratio 0.15). The images are better viewed
by zooming in on screen.

(a) Ground Truth (b) Noisy Image
(16.09dB/0.2644)

(c) BPFA
(17.73dB/0.3199)

(d) BM3D
(25.58dB/0.7552)

(e) PGPD
(25.61dB/0.7633)

(f) WNNM
(24.03dB/0.6796)

(g) Two Phase
(22.66dB/0.5027)

(h) WESNR
(26.74dB/0.7769)

(i) Noise Clinic
(19.87dB/0.3874)

(j) Ours
(26.58dB/0.7853)

Fig. 8. Denoised images of Barbara by different methods (the mixed Gaussian and
RVIN noise is with σ = 20 and ratio 0.15). The images are better viewed by zoom-
ing in on screen.
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IPOL [36] while the other two images are provided by the Neat Image website [33].
The denoised images are evaluated in Figures 9 to 11.

From the results listed in Figures 9, 10, and 11, we can see that the proposed method
can remove real noise while preserving details better than other methods. For example,
in the Figure 10, the image ”Girls” are damaged by night shot noise and hardly recov-
erable. However, the proposed method can denoise the heavy noise, restore the details
under the noise, and make the image looks better. The details of the building in the
background is zoomed in to demonstrate the advantages of our proposed method than
other compared methods. Another example is the image ”Windmill”, the noise in night
sky is traditionally difficult to remove, since it is very hard to distinct the image noise
from the faint stars in the sky. Our method not only reduces the noise while generat-
ing much less artifacts, but also preserves details, i.e., the faint stars, better than other
methods.

(a) Real Noisy Image (b) BPFA (c) BM3D (d) PGPD

(e) WESNR (f) Noise Clinic (g) Neat Image (h) Ours

Fig. 9. Denoised images of the old image ”SolvayConf1927” by different methods. The
images are better viewed by zooming in on screen.

7 Conclusion

Image denoising is a commonly encountered problem in real life. However, most de-
noising methods [27, 5–7, 30, 26, 9, 11] need to know the noise distributions, such as
Gaussian noise or mixed Gaussian and impulse noise, as well as the noise intensity. In
this paper, we developed a novel blind image denoising method by patch group (PG)
based nonlocal self-similarity prior modeling. We modeled the PG variations by Mix-
ture of Gaussians [24] whose parameters, including its number of components, are in-
ferred by variational Bayesian method. For each component, we employed nonparamet-
ric Bayesian dictionary learning [27, 21, 22] to reconstruct the latent clean images. The
proposed method can deal with unknown or arbitrary noise without knowing the noise
distribution. From the experimental results on removing Gaussian noise, mixed Gaus-
sian and random value impulse noise , and the noise in real images, we demonstrated
that the proposed method achieves comparable PSNR/SSIM measurements and even
better visual quality than those methods [27, 5, 30, 26, 9, 11, 18, 33], which are specially
designed for specific types of noises.
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(a) Real Noisy Image (b) BPFA (c) BM3D (d) PGPD

(e) WESNR (f) Noise Clinic (g) Neat Image (h) Ours

Fig. 10. Denoised images of the image ”Girls” by different methods. The images are
better viewed by zooming in on screen.

(a) Real Noisy Image (b) BPFA (c) BM3D (d) PGPD

(c) WESNR (d) Noise Clinic (e) Neat Image (f) Ours

Fig. 11. Photo courtesy of Alexander Semenov. Denoised images of the image ”Wind-
mill” by different methods. The images are better viewed by zooming in on screen.
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