Supplementary Material to “A Trilateral Weighted Sparse Coding Scheme for for Real-World Image Denoising”

Jun Xu\(^1\), Lei Zhang\(^1\)*, David Zhang\(^1,2\)

\(^1\)The Hong Kong Polytechnic University, Hong Kong SAR, China
\(^2\)School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
{csjunxu, cslzhang, csdzhang}@comp.polyu.edu.hk

In this supplementary file, we provide:
1. The proof of Theorem 1 in the main paper;
2. Denoising results on the 20 gray level images;
3. More denoising results on the real noisy images of dataset [1];
4. More denoising results on the real noisy images of dataset [2];
5. More denoising results on the real noisy images of dataset [3].

1 Proof of Theorem 1

Theorem 1. Assume that \(A \in \mathbb{R}^{3p^2 \times 3p^2} \), \(B \in \mathbb{R}^{M \times M} \) are both symmetric and positive semi-definite matrices. If at least one of \(A, B \) is positive definite, the Sylvester equation \(AC + CB = E \) has a unique solution for \(C \in \mathbb{R}^{3p^2 \times M} \).

Proof. Since \(A, B \) are symmetric matrices, they can be diagonalized as \(A = U_A \Sigma_A U_A^\top \), \(B = U_B \Sigma_B U_B^\top \), where \(\Sigma_A = \text{diag}(\lambda_A^1, ..., \lambda_A^{3p^2}) \) and \(\Sigma_B = \text{diag}(\lambda_B^1, ..., \lambda_B^M) \) are diagonal matrices. Since \(A, B \) are positive semi-definite matrices, their corresponding eigenvalues are non-negative, i.e., \(\lambda_A^i \geq 0 \) for \(\forall i = 1, ..., 3p^2 \) and \(\lambda_B^j \geq 0 \) for \(\forall j = 1, ..., M \). If at least one of the matrices \(A, B \) is positive definite, then \(\lambda_A^i + \lambda_B^j > 0 \) holds true for \(\forall i, j \) and \(\sigma(A) \cap \sigma(-B) = \emptyset \). Therefore, the Sylvester equation \(AC + CB = E \) has a unique solution.

2 Denoising results on the 20 gray level images

In this section, we compare the competing methods on the 20 widely used images (listed in Fig. 1) in Figures 5–9. The compared methods include BM3D-SAPCA [4], LSSC [5], NCSR [6], WNNM [7], TNRD [8], DnCNN [9], and the baseline method WSC described in the main paper.

3 More denoising results on the real noisy images of dataset [1]

In this section, we give more visual comparisons of the competing methods on the dataset [1]. Fig. 2 shows 10 sample images of this dataset. The real noisy images

* This project is supported by Hong Kong RGC GRF project (PolyU 152124/15E).
4 More denoising results on the real noisy images of dataset [2]

In this section, we give more visual comparisons of the competing methods on the 15 cropped real noisy images (listed in Fig. 3) used in [2]. In this dataset, each scene was shot 500 times under the same camera and camera setting. The mean image of the 500 shots is roughly taken as the “ground truth”, with which the PSNR and SSIM [14] can be computed. The compared methods include CBM3D [10], TNRD [8], DnCNN [9], NI [11], NC [12], CC [2], and MCWNNM [13]. As shown in Figures 13–15, our proposed TWSC method produces perceptually more pleasing results than the competing methods.

5 More denoising results on the real noisy images of dataset [3]

In this section, we give more visual comparisons of the competing methods on the 10 cropped real noisy images (listed in Fig. 4) used in [3]. In this dataset, each scene was shot twice, one at a high ISO value and the other at a low ISO value. The image captured at low ISO value (usually 100 or 125) is roughly taken
as the “ground truth”, with which the PSNR and SSIM [14] can be computed. The compared methods include CBM3D [10], TNRD [8], DnCNN [9], NI [11], NC [12], MCWNNM [13], and the baseline WSC method. As shown in Figures 16–18, our proposed TWSC method produces perceptually more pleasing results than the competing methods.

Fig. 4. The 10 cropped real noisy images from dataset [3].

References

Fig. 5. Denoised images and PSNR/SSIM results of *Airplane* by different methods (the noise level is $\sigma = 15$).
Fig. 6. Denoised images and PSNR/SSIM results of Barbara by different methods (the noise level is $\sigma = 25$).
Fig. 7. Denoised images and PSNR/SSIM results of House by different methods (the noise level is $\sigma = 35$).
Fig. 8. Denoised images and PSNR/SSIM results of Leaves by different methods (the noise level is $\sigma = 50$).
(a) Ground Truth (b) Noisy
(10.63dB/0.0599)

(c) BM3D-SAPCA
(26.81dB/0.7226)
(d) LSSC
(27.21dB/0.7564)
(e) NCSR
(27.00dB/0.7586)
(f) WNNM
(27.53dB/0.7639)

(g) TNRD
(27.16dB/0.7503)
(h) DnCNN
(27.56dB/0.7656)
(i) WSC
(26.76dB/0.7345)
(j) TWSC
(27.60dB/0.7742)

Fig. 9. Denoised images and PSNR/SSIM results of Lena by different methods (the noise level is $\sigma = 75$).
Fig. 10. Denoised images of the real noisy image Bears [1] by different methods.
Fig. 11. Denoised images of the real noisy image Frog [1] by different methods.
Fig. 12. Denoised images of the real noisy image *Girl* [1] by different methods.
Fig. 13. Denoised images and PSNR/SSIM results of the real noisy image Nikon D600 ISO 3200 [2] by different methods.
Fig. 14. Denoised images and PSNR/SSIM results of the real noisy image *Nikon D800 ISO 1600* [2] by different methods.
Fig. 15. Denoised images and PSNR/SSIM results of the real noisy image Nikon D800 ISO 3200 1 [2] by different methods.
Fig. 16. Denoised images and PSNR/SSIM results of the real noisy image “0019_16” captured by Olympus E-M10 [3] by different methods.
Fig. 17. Denoised images and PSNR/SSIM results of the real noisy image “0025_15” captured by Olympus E-M10 [3] by different methods.
Fig. 18. Denoised images and PSNR/SSIM results of the real noisy image “0037_8” captured by Sony RX100 IV [3] by different methods.