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Abstract: Most of existing image denoising methods learn image priors from either external data or the noisy image itself to
remove noise. However, priors learned from external data may not be adaptive to the image to be denoised, while priors learned
from the given noisy image may not be accurate due to the interference of corrupted noise. Meanwhile, the noise in real-world noisy
images is very complex, which is hard to be described by simple distributions such as Gaussian distribution, making real-world
noisy image denoising a very challenging problem. We propose to exploit the information in both external data and the given noisy
image, and develop an external prior guided internal prior learning method for real-world noisy image denoising. We first learn
external priors from an independent set of clean natural images. With the aid of learned external priors, we then learn internal
priors from the given noisy image to refine the prior model. The external and internal priors are formulated as a set of orthogonal
dictionaries to efficiently reconstruct the desired image. Extensive experiments are performed on several real-world noisy image
datasets. The proposed method demonstrates highly competitive denoising performance, outperforming state-of-the-art denoising
methods including those designed for real-world noisy images.

Index Terms—Image Denoising, Real-World Noisy Image, Image Prior Learning, Guided Dictionary Learning.

I. INTRODUCTION

IMAGE denoising is a crucial and indispensable step to
improve image quality in digital imaging systems. In partic-

ular, with the decrease of size of CMOS/CCD sensors, image
is more easily to be corrupted by noise and hence denoising is
becoming increasingly important for high resolution imaging.
The problem of image denoising has been extensively studied
in literature and numerous image denoising methods [1]–[44]
have been proposed in the past decades. Most of existing
denoising methods focus on the scenario of additive white
Gaussian noise (AWGN) [1]–[25], where the observed noisy
image y is modeled as the addition of clean image x and
AWGN n, i.e., y = x + n. There are also methods proposed
for removing Poisson noise [26], [27], mixed Poisson and
Gaussian noise [28]–[31], mixed Gaussian and impulse noise
[32]–[34], and realistic noise in real photography [35]–[44].

Natural images have many properties, such as sparsity and
nonlocal self-similarity, which can be employed as useful
priors for designing image denoising methods. Based on the
facts that natural images will be sparsely distributed in some
transformed domain, wavelet [1] and curvelet [2] transforms
have been widely adopted for image denoising. The sparse
representation based methods [3]–[8] encode image patches
over a dictionary by using `1-norm minimization to enforce
the sparsity. The well-known bilateral filters [9] employ the
prior information that image pixels exhibit similarity in both
spatial domain and intensity domain. Other image priors such
as multiscale self-similarity [10] and nonlocal self-similarity
[11], [12], or the combination of multiple image priors [13],
[14] have also been successfully used in image denoising.
For example, by using low-rank minimization to characterize
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the image nonlocal self-similarity, the WNNM [13] method
achieves state-of-the-art performance for AWGN denoising.

Instead of using predefined image priors, methods have also
been proposed to learn priors from natural images for de-
noising. The generative image prior learning methods usually
learn prior models from a set of external clean images and
apply the learned prior models to the given noisy image [14]–
[19], or learn priors from the given noisy image to perform
denoising [3]. Recently, the discriminative image prior learn-
ing methods [20]–[25], which learn denoising models from
pairs of clean and noisy images, have been becoming popular.
The representative methods include the neural network based
methods [20]–[22], random fields based methods [23], [24],
and reaction diffusion based methods [25].

Most of the above mentioned methods focus on AWGN
removal, however, the assumption of AWGN is too ideal
to be true for real-world noisy images, where the noise is
much more complex and varies with different scenes, cameras
and camera settings (ISO, shutter speed, and aperture, etc.)
[42], [45]. As a result, many denoising methods in literature,
including those learning based methods, become less effective
when applied to real-world noisy images. Fig. 1 shows an
example, where we apply some representative and state-of-the-
art denoising methods, including CBM3D [7], WNNM [13],
DnCNN [22], CSF [24], and TNRD [25] to a real-world noisy
image (captured by a Nikon D800 camera with ISO is 3200)
provided in [42]. One can see that these methods either remain
much the noise or over-smooth the image details.

There have been a few methods [35]–[43] and software tool-
boxes [44] developed for real-world noisy image denoising.
Almost all of these methods follow a two-stage framework:
first estimate the parameters of the noise model (usually
assumed to be Gaussian or mixture of Gaussians (MoG)),
and then perform denoising with the estimated noise model.
However, the noise in real-world noisy images is very complex
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(a) Noisy [42]: 33.30dB (b) CBM3D [7]: 34.55dB (c) WNNM [13]: 35.85dB (d) CSF [24]: 35.39dB (e) TNRD [25]: 35.97dB

(f) DnCNN [22]: 34.14dB (g) NI [44]: 34.39dB (h) NC [39], [40]: 35.33dB (i) Ours: 37.49dB (j) Mean Image [42]

Fig. 1: Denoised images of a region cropped from the real-world noisy image “Nikon D800 ISO 3200 A3” [42] by different
methods. The scene was shot 500 times with the same camera and camera setting. The mean image of the 500 shots is roughly
taken as the “ground truth”, with which the PSNR can be computed. The images are better viewed by zooming in on screen.

and is hard to be modeled by explicit distributions such as
Gaussian and MoG. According to [45], the noise corrupted
in the in-camera imaging process [42], [46]–[48] is signal
dependent and comes from five main sources: photon shot,
fixed pattern, dark current, readout, and quantization noise.
The existing methods [35]–[42], [44] mentioned above may
not perform well on real-world noisy image denoising tasks.
Fig. 1 also shows the denoising results of two real-world noisy
image denoising methods, Noise Clinic [39], [40] and Neat
Image [44]. One can see that these two methods still generate
much noise caused artifacts.

This work aims to develop a new paradigm for real-world
noisy image denoising. Different from existing real-world
noisy image denoising methods [35]–[42] which focus on
noise modeling, we focus on image prior learning. We argue
that with a strong and adaptive prior learning scheme, robust
denoising performance on real-world noisy images can still
be obtained. To achieve this goal, we propose to first learn
image priors from external clean images, and then employ the
learned external priors to guide the learning of internal priors
from the given noisy image. The flowchart of the proposed
method is illustrated in Fig. 2. We first extract millions of
patch groups (PGs) from a set of high quality natural images,
with which a Gaussian Mixture Model (GMM) is learned
as the external image prior. The learned GMM prior model
is used to assign each PG extracted from the given noisy
image into its most suitable cluster via maximum a-posterior,
and then an external-internal hybrid orthogonal dictionary is
learned as the final prior for each cluster, with which the
denoising can be readily performed by weighted sparse coding
with closed form solution. The external priors learned from
clean images preserve fine-scale image structural information,
which is hard to be reproduced from noisy images. Therefore,
external dictionary can serve as a good supplement to the
internal dictionary. Our proposed denoising method is simple
and efficient, yet our extensive experiments on real-world

noisy images demonstrate its better denoising performance
than the current state-of-the-arts.

II. RELATED WORK

A. Internal and External Prior Learning
Learning natural image priors plays a key role in image

denoising [3]–[5], [8], [10], [14]–[25]. There are mainly four
categories of prior learning based methods. 1) External prior
learning methods [14]–[16] learn priors (e.g., dictionaries)
from a set of external clean images, and the learned priors are
used to recover the latent clean image from the given noisy
image. 2) Internal prior learning methods [3]–[5], [8], [10]
directly learn priors from a given noisy image, and image
denoising is often done simultaneously with the prior learning
process. 3) Discriminative prior learning methods [20]–[25]
learn discriminative models or mapping functions from clean
and noisy image pairs, and the learned models or mapping
functions are applied to a noisy image for denoising. 4) Hybrid
methods [17]–[19] combine the external and internal priors to
denoise the given input image.

It has been shown [14]–[16] that the external priors learned
from natural clean images are effective and efficient for
universal image denoising problems, whereas they are not
adaptive to the given noisy image and some fine-scale image
structures may not be well recovered. By contrast, the internal
priors learned from the given noisy image are adaptive to
image content, but the learned priors can be much affected by
noise and the learning processing is usually slow [3]–[5], [8],
[10]. Besides, most of the internal prior learning methods [3]–
[5], [8], [10] assume additive white Gaussian noise (AWGN),
making the learned priors less robust for real-world noisy
images. In this paper, we use external priors to guide the
internal prior learning. Our method is not only much faster
than the traditional internal learning methods, but also very
robust to denoise real-world noisy images.

In [17], the authors employed external clean patches to
denoise noisy patches with high individual Signal-to-Noise-
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Fig. 2: Flowchart of the proposed external prior guided internal prior learning and denoising framework.

Ratio (PatchSNR), and employed internal noisy patches to
denoise noisy patches with low PatchSNR. This is essentially
different from our work which employs the external patch
group based prior to guide the clustering and dictionary
learning of the internal noisy patch groups. In [18], the external
priors are only used to guide the internal patch clustering for
image denoising, while in our work, the learned external priors
are employed to guide not only the internal clustering, but also
the internal dictionary learning. Besides, the method of [18]
follows a patch based framework for AWGN removal, while
in our work we employ a patch group based framework for
real-world noisy image denoising. In addition, some technical
details are also different. For example, method in [18] utilizes
low-rank minimization for denoising, while we use dictionary
learning and sparse coding for denoising. In the Targeted
Image Denoising (TID) method [19], targeted images are
selected from a large dataset for each patch in the input noisy
image for denoising, which is computationally expensive.

B. Real-World Noisy Image Denoising
Most of the denoising methods in literature [1]–[16], [20]–

[25] assume AWGN noise and use simulated noisy images for
algorithm design and evaluation. Recently, several denoising
methods have been proposed to remove unknown noise from
real-world noisy images [35]–[42]. Portilla [35] employed
a correlated Gaussian model to estimate the noise of each
wavelet subband. Rabie [36] modeled the noisy pixels as out-
liers and performed denoising via Lorentzian robust estimator.
Liu et al. [37] proposed the “noise level function” to estimate

the noise and performed denoising by learning a Gaussian
conditional random field. Gong et al. [38] proposed to model
the data fitting term via weighted sum of `1 and `2 norms and
performed denoising by a simple sparsity regularization term
in the wavelet transform domain. The “Noise Clinic” [39],
[40] estimates the noise distribution by using a multivariate
Gaussian model and removes the noise by using a generalized
version of nonlocal Bayesian model [12]. Zhu et al. [41]
proposed a Bayesian method to approximate and remove the
noise via a low-rank mixture of Gaussians (MoG) model.
The method in [42] models the cross-channel noise in real-
world noisy image as a multivariate Gaussian and the noise
is removed by the Bayesian nonlocal means filter [49]. The
commercial software Neat Image [44] estimates the noise
parameters from a flat region of the given noisy image and
filters the noise correspondingly.

The methods [35]–[42] emphasize much on the noise mod-
eling, and they use Gaussian or MoG to model the noise in
real-world noisy images. Nonetheless, the noise in real-world
noisy images is very complex and hard to be modeled by
explicit distributions [45]. These works ignore the importance
of learning image priors, which actually can be easier to model
compared with modeling the complex realistic noise. In this
paper, we propose a simple yet effective image prior learning
method for real-world noisy image denoising. Due to its strong
prior modeling ability, the proposed method simply models the
noise as locally Gaussian, and it achieves highly competitive
performance on real-world noisy image denoising.
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III. EXTERNAL PRIOR GUIDED INTERNAL PRIOR
LEARNING FOR IMAGE DENOISING

In this section, we first describe the learning of external
prior, and then describe in detail the guided internal prior
learning method, followed by the denoising algorithm.

A. Learn External Patch Group Priors
The nonlocal self-similarity based patch group (PG) prior

learning [14] has proved to be very effective for image denos-
ing. In this work, we extract PGs from natural clean images
to learn external priors. A PG is a group of similar patches
to a local patch. In our method, each local patch is extracted
from a RGB image with patch size p× p× 3. We search the
M most similar (i.e., smallest Euclidean distance) patches to
this local patch (including the local patch itself) in a W ×W
region around it. Each patch is stretched to a patch vector
xm ∈ R3p2×1 to form the PG, denoted by {xm}Mm=1. The
mean vector of this PG is µ = 1

M

∑M
m=1 xm, and the group

mean subtracted PG is defined as X , {xm = xm −µ}Mm=1.
Assume that a number of L PGs are extracted from a

set of external natural images, and the l-th PG is Xl ,
{xl,m}Mm=1, l = 1, ..., L. A Gaussian Mixture Model (GMM)
is learned to model the PG prior. The overall log-likelihood
function is

lnL =

L∑
l=1

ln(

K∑
k=1

πk

M∏
m=1

N (xl,m|µk,Σk)). (1)

The learning process is similar to the GMM learning in [14],
[16], [50]. Finally, a GMM model with K Gaussian compo-
nents is learned, and the learned parameters include mixture
weights {πk}Kk=1, mean vectors {µk}Kk=1, and covariance
matrices {Σk}Kk=1. Note that the mean vector of each cluster
is naturally zero, i.e., µk = 0.

To better describe the subspace of each Gaussian compo-
nent, we perform singular value decomposition (SVD) [51] on
the covariance matrix:

Σk = UkSkU
>
k . (2)

The eigenvector matrices {Uk}Kk=1 will be employed as
the external orthogonal dictionary to guide the internal sub-
dictionary learning in next sub-section. The singular values
in Sk reflect the significance of the singular vectors in Uk.
They will also be utilized as prior weights for weighted sparse
coding in our denoising algorithm.

B. Guided Internal Prior Learning

After the external PG prior model is learned from external
natural clean images, we employ it to guide the internal
PG prior learning for a given real-world noisy image. The
guidance lies in two aspects. First, the external prior will
guide the subspace clustering [52], [53] of internal noisy PGs.
Second, the external prior will guide the orthogonal dictionary
learning of internal noisy PGs.

1) Internal Subspace Clustering
Given a real-world noisy image y, we extract N (over-

lapped) local patches from it. Similar to the external prior
learning stage, for the n-th (n = 1, ..., N ) local patch
we search its M most similar (by Euclidean distance)

patches around it to form a noisy PG, denoted by Yn =
{yn,1, ...,yn,M}. Then the group mean of Yn, denoted by µn,
is subtracted from each patch by yn,m , yn,m −µn, leading
to the mean subtracted noisy PG Y n , {yn,m}Mm=1.

The external GMM prior models {N (0,Σk)}Kk=1 basically
characterize the subspaces of natural high quality PGs. There-
fore, we project each noisy PG Y n into the subspaces of
{N (0,Σk)}Kk=1 and assign it to the most suitable subspace
based on the posterior probability:

P (k|Y n) =

∏M
m=1N (yn,m|0,Σk)∑K

l=1

∏M
m=1N (yn,m|0,Σl)

(3)

for k = 1, ...,K. Then Y n is assigned to the subspace with
the maximum a-posteriori (MAP) probability maxk P (k|Y n).

2) Guided Orthogonal Dictionary Learning
Assume that we have assigned all the internal noisy PGs
{Y n}Nn=1 to their corresponding most suitable subspaces
in {N (0,Σk)}Kk=1. For the k-th subspace, the noisy PGs
assigned to it are {Y kn}

Nk
n=1, where Y kn = [ykn,1, ...,ykn,M ]

and
∑K
k=1Nk = N . We propose to learn an orthogonal

dictionary Dk from each set of PGs Y kn to characterize
the internal PG prior with the guidance of the corresponding
external orthogonal dictionary Uk (Eq. (2)). The reasons that
we learn orthogonal dictionaries are two-fold. Firstly, the PGs
{Y kn}

Nk
n=1 are in a subspace of the whole space of all PGs;

therefore, there is no necessary to learn a redundant over-
complete dictionary to characterize it, while an orthonormal
dictionary has naturally zero mutual incoherence [54]. Sec-
ondly, the orthogonality of dictionary can make the patch
encoding in the testing stage very efficient, leading to an
efficient denoising algorithm (please refer to sub-section III-C
for more details).

We let the orthogonal dictionary Dk be
Dk , [Dk,E Dk,I] ∈ R3p2×3p2 , (4)

where Dk,E = Uk(:, 1 : r) ∈ R3p2×r is the external
sub-dictionary and it includes the first r most important
eigenvectors of Uk, and the internal sub-dictionary Dk,I ∈
R3p2×(3p2−r) is to be adaptively learned from the noisy PGs
{Y kn}

Nk
n=1. The rationale to design Dk as a hybrid dictionary

is as follows. The external sub-dictionary Dk,E is pre-trained
from external clean data, and it represents the k-th latent
subspace of natural images, which is helpful to reconstruct the
common latent structures of images. However, Dk,E is general
to all images but not adaptive to the given noisy image. Some
fine-scale details specific to the given image may not be well
characterized by Dk,E. Therefore, we learn an internal sub-
dictionary Dk,I to supplement Dk,E. In other words, Dk,I is
to reveal the latent subspace adaptive to the input noisy image,
which cannot be effectively represented by Dk,E.

For notation simplicity, in the following development we
ignore the subspace index k for Y kn andDk, etc. The learning
of hybrid orthogonal dictionary D is performed under the
following weighted sparse coding framework:

min
DI,{αn,m}

N∑
n=1

M∑
m=1

(‖yn,m −Dαn,m‖22 +

3p2∑
j=1

λj |αn,m,j |)

s.t. D = [DE DI], D
>D = I,

(5)
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where I is the 3p2 dimensional identity matrix, αn,m is the
sparse coding vector of the m-th patch yn,m in the n-th PG
Y n and αn,m,j is the j-th element of αn,m. λj is the j-th
regularization parameter defined as

λj = λ/(
√
Sk(j) + ε), (6)

where Sk(j) is the j-th singular value of diagonal singular
value matrix Sk (please refer to Eq. (2)) and ε is a small
positive number to avoid zero denominator. Note that DE =
Uk if r = 3p2 and DE = ∅ if r = 0.

In the dictionary learning model (5), we use the `2 norm
to model the representation residual of PGs. This is because
the patches in those PGs have similar content, and we assume
that the noise therein will have similar statistics, which can
be roughly modeled as locally Gaussian. On the other hand,
this will make the dictionary learning much easier to solve.
We employ an alternating iterative approach to solve the opti-
mization problem (5). Specifically, we initialize the orthogonal
dictionary as D(0) = Uk and for t = 0, 1, ..., T − 1, and
alternatively update αn,m and DI as follows.

Updating Sparse Coding Coefficients: Given the orthog-
onal dictionary D(t), we update each sparse coding vector
αn,m by solving

α(t+1)
n,m := arg min

αn,m

‖yn,m −D(t)αn,m‖22 +

3p2∑
j=1

λj |αn,m,j |.

(7)
Since dictionary D(t) is orthogonal, the problems (7) has a
closed-form solution
α(t+1)
n,m = sgn((D(t))>yn,m)�max(|(D(t))>yn,m| − λ,0),

(8)
where λ = 1

2 [λ1, λ2, ..., λ3p2 ]> is the vector of regularization
parameter, sgn(•) is the sign function and � means element-
wise multiplication. The detailed derivation of Eq. (8) can be
found in Appendix A.

Updating Internal Sub-dictionary: Given the sparse cod-
ing vectors {α(t+1)

n,m }, we update the internal sub-dictionary by
solving

D
(t+1)
I : = arg min

DI

N∑
n=1

M∑
m=1

‖yn,m −Dα(t+1)
n,m ‖22

= arg min
DI

‖Y n −DA(t+1)‖2F

s.t. D = [DE DI], D
>
I DI = I(3p2−r), D

>
E DI = 0,

(9)

where A(t+1) = [α
(t+1)
1,1 , ...,α

(t)
1,M , ...,α

(t+1)
N,1 , ...,α

(t+1)
N,M ] and

I(3p2−r) is the (3p2 − r) dimensional identity matrix. The
sparse coefficients matrix can be written as A(t+1) =

[(A
(t+1)
E )> (A

(t+1)
I )>]> where the external part A(t+1)

E ∈
Rr×NM and the internal part A(t+1)

I ∈ R(3p2−r)×NM

represent the coding coefficients of Y over external sub-
dictionary DE and internal sub-dictionary D(t)

I , respectively.
According to the following Theorem 1, by setting Y =

Y n − DEA
(t+1)
E , E = DE,D = DI,A = AI, the problem

(9) has a closed-form solution D
(t+1)
I = UIV

>
I , where

UI ∈ R3p2×(3p2−r) and VI ∈ R(3p2−r)×(3p2−r) are the
orthogonal matrices obtained by the following SVD [51]

Algorithm 1: External Prior Guided Internal Prior Learning
Input: Matrices Y n, external sub-dictionary DE, parameter vector λ
Initialization: initialize D(0) = Uk by Eq. (2);
for t = 0, 1, ..., T − 1 do
1. Update α(t+1)

n,m by Eq. (7);
2. Update D(t+1)

I by Eq. (9);
end for
Output: Internal orthogonal dictionary D(T )

I and sparse codes A(T ).

(I −DED
>
E )Y (A

(t+1)
I )> = UISIV

>
I . (10)

The orthogonality of internal sub-dictionary D(t+1)
I can be

checked by (D
(t+1)
I )>(D

(t+1)
I ) = VIU

>
I UIV

>
I = I(3p2−r).

In fact, the Theorem 1 provides a sufficient and necessary con-
dition to guarantee the existence of the closed-form solution
for the internal sub-dictionary of the problem (9).

Theorem 1. Let A ∈ R(3p2−r)×M , Y ∈ R3p2×M be two
given data matrices. E ∈ R3p2×r is a given matrix satisfying
E>E = Ir×r, then D̂ = UV> is the necessary condition of

D̂ = arg min
D
‖Y − DA‖2F

s.t. D>D = I(3p2−r)×(3p2−r), E>D = 0r×(3p2−r),
(11)

where U ∈ R3p2×(3p2−r) and V ∈ R(3p2−r)×(3p2−r) are the
orthogonal matrices obtained by performing economy (a.k.a.
reduced) SVD [51]:

(I3p2×3p2 − EE>)YA> = UΣV> (12)

Besides, if rank(Σ) = 3p2−r, D̂ = UV> is also the sufficient
condition of problem (11).

The proof of the Theorem 1 can be found in Appendix B.
Though the problem (9) has a closed-form solution by SVD
[51], the uniqueness of solution cannot be guaranteed since
the matrices (I3p2×3p2 −EE>)YA> as well as U and V may
be reduced to matrices of lower rank. Hence, we also analyze
the uniqueness of the solution D̂ by the following Theorem 2,
whose proof can be found in Appendix C.

Theorem 2. (a) If (I3p2×3p2 − EE>)YA> ∈ R3p2×(3p2−r)

is nonsingular, i.e., rank(Σ) = 3p2 − r, then the solution of
D̂ = UV> is unique; (b) If (I3p2×3p2−EE>)YA> is singular,
i.e., 0 ≤ rank(Σ) < 3p2 − r, then the number of possible
solutions of D̂ is 23p2−r−rank(Σ) for fixed U and V .

The above alternative updating steps are repeated until the
number of iterations exceeds a preset threshold. In each step,
the energy value of the objective function (5) is decreased
and we empirically found that the proposed model usually
converges in 10 iterations. We summarize the procedures in
Algorithm 1.

C. The Denoising Algorithm

The denoising of the given noisy image y can be simulta-
neously done with the guided internal sub-dictionary learning
process. Once we obtain the solutions of sparse coding vectors
{α̂(T )

n,m} in Eq. (8) and the orthogonal dictionary D(T ) =

[DE D
(T )
I ] in Eq. (9), the latent clean patch ŷn,m of the m-th

noisy patch in PG Yn is reconstructed as
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Algorithm 2: External Prior Guided Internal Prior Learning for
Real-World Noisy Image Denoising

Input: Noisy image y, external PG prior GMM model
Initialization: x̂(0) = y;
for Ite = 1 : IteNum do
1. Extracting internal PGs {Yn}Nn=1 from x̂(Ite−1);
Guided Internal Subspace Clustering:

for each PG Yn do
2. Calculate group mean µn and form mean subtracted PG Y n;
3. Subspace clustering via Eq. (3);

end for
Guided Internal Orthogonal Dictionary Learning:

for the PGs in each subspace do
4. External PG prior guided internal orthogonal dictionary learning by

solving Eq. (5);
5. Recover each patch in all PGs via Eq. (13);

end for
6. Aggregate the recovered PGs of all subspaces to form the recovered

image x̂(Ite);
end for
Output: The denoised image x̂.

ŷn,m = D(T )α̂(T )
n,m + µn, (13)

where µn is the group mean of Yn. The latent clean image is
then reconstructed by aggregating all the reconstructed patches
in all PGs. We perform the above denoising procedures for
several iterations for better denoising outputs. The proposed
denoising algorithm is summarized in Algorithm 2.

IV. EXPERIMENTS

A. Implementation Details

The noise in real-world images is very complex due to the
many factors such as sensors, lighting conditions and camera
settings. It is difficult to evaluate one algorithm by tuning its
parameters for all these different settings. In this work, we
fix the parameters of our algorithm and apply it to all the
testing datasets, though they were captured by different types
of sensors and under different camera settings. The parameters
of our method include the patch size p, the number of similar
patches M in a patch group (PG), the window size W for PG
searching, the number of Gaussian components K in GMM,
the number of atoms r in the external sub-dictionaries, the
sparse regularization parameter λ, the iteration numbers T for
solving problem (5) and IteNum for Alg. 2.

The performance of our proposed method varies little when
we set patch size between p = 6 and p = 9, and we fix
the patch size as p = 6 to save computational cost. The
search window is fixed to W = 31 to balance computational
cost and denoising accuracy of the proposed method. The
number of patches in a patch group is set as M = 10, while
using more patches will not bring clear benefits. We learn
the external GMM prior with 3.6 million PGs extracted from
the Kodak PhotoCD Dataset (http://r0k.us/graphics/kodak/),
which includes 24 high quality color images. The number
of Gaussians in GMM is set as K = 32, while using more
Gaussians can only bring slightly better performance but cost
more computational resources. The number of atoms in the
external sub-dictionaries affects little the performance when it
is set between r = 27 and r = 81, and we set it as r = 54 to
make the external and internal sub-dictionaries have the same
number of atoms. We set the number of iterations as T = 2
for solving the problem (5), while the number of iterations for
Alg. 2 is set as IteNum = 4.

Fig. 3: The influence of parameter λ on the average PSNR
(dB)/SSIM results of the proposed method on dataset [42].

One key parameter of our model is the regularization
parameter λ. Fig. 3 plots the curves of PSNR/SSIM results
w.r.t λ on the 15 cropped image in dataset [42]. One can
see that our proposed method achieves good PSNR/SSIM
performance within a certain range of λ. Similar observations
can be made on other datasets. We fix λ = 0.001 in the
paper, and it works well across the three datasets used in our
experiments.

All the parameters of our method are fixed in all experi-
ments, which are run under the Matlab2014b environment on
a machine with Intel(R) Core(TM) i7-5930K CPU of 3.5GHz
and 32GB RAM. We will release the code with the publication
of this work.

B. The Testing Datasets

We evaluate the proposed method on three real-world noisy
image datasets, where the images were captured under indoor
or outdoor lighting conditions by different types of cameras
and camera settings.

Dataset 1. The first dataset is provided in [42], which
includes noisy images of 11 static scenes. The noisy images
were collected under controlled indoor environment. Each
scene was shot 500 times under the same camera and camera
setting. The mean image of the 500 shots is roughly taken as
the “ground truth”, with which the PSNR and SSIM [55]can
be computed.

Since the image size is very large (about 7000× 5000) and
the 11 scenes share repetitive contents, the authors of [42]
cropped 15 smaller images (of size 512 × 512) to perform
experiments. In order to evaluate the proposed methods more
comprehensively, we cropped 60 images of size 500 × 500
from the dataset for experiments. Some samples are shown in
Fig. 4. Note that our cropped 60 images and the 15 cropped
images by the authors of [42] are from different shots.

Dataset 2 is called the Darmstadt Noise Dataset (DND)
[56], which includes 50 different pairs of images of the same
scenes captured by Sony A7R, Olympus E-M10, Sony RX100
IV, and Huawei Nexus 6P. The real-world noisy images are
collected under higher ISO values with shorter exposure time,
while the “ground truth” images are captured under lower ISO
values with longer exposure times. Since the captured images
are of megapixel-size, the authors cropped 20 bounding boxes
of 512× 512 pixels from each image in the dataset, yielding
50× 20 = 1000 test crops in total. Some samples are shown
in Fig. 5. Note that the “ground truth” images of this dataset
have not been released yet, but one can submit the denoised

http://r0k.us/graphics/kodak/
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Fig. 4: Some sample images from the Dataset 1 [42].

images to the Project Website and get the average PSNR (dB)
and SSIM results.

Dataset 3. On one hand, the scenes of Dataset 1 are mostly
printed photos, and they cannot represent realistic objects and
scenes with different reflectance properties. On the other hand,
the Dataset 2 contains repetitive contents in the 20 cropped
images for each of the 50 scenes. To remedy the limitations of
Dataset 1 and Dataset 2, we construct another dataset which
contains images of 10 different scenes captured by Canon 80D
and Sony A7II cameras with more ISO settings and more
comprehensive scenes. The ISO settings in our dataset are 800,
1600, 3200, 6400, 12800 while those of Dataset 1 are 1600,
3200, 6400. Compared to Dataset 2, our new dataset is more
comprehensive on scene contents. Similar to Dataset 1, each
scene was captured 500 shots, and the mean image of these
500 shots can be used a kind of ground-truth to evaluate the
denoising algorithms. Fig. 6 shows some cropped images of
the scenes in our dataset. One can see that the images contain
a lot of different realistic objects with varying colors, shapes,
materials, etc.

Our dataset provides real-world noisy images of realistic ob-
jects with different ISO settings. It can be used to more fairly
evaluate the performance of different real-world noisy image
denoising methods. Consider that the image resolution is very
high (about 4000×4000), for the convenience of experimental
studies, we cropped 100 (10 for each scene) smaller images
(of size 512×512) from it to perform experiments. The whole
dataset will be made publically available with the publication
of this paper.

Fig. 5: Some sample images from the Dataset 2 [56].

C. Comparison among external, internal and guided inter-
nal priors

To demonstrate the advantages of external prior guided
internal prior learning, we perform real-world noisy image
denoising by using external priors only (denoted by “Exter-
nal”), internal priors only (denoted by “Internal”), and the pro-
posed guided internal priors (denoted by “Guided Internal”),
respectively. For the “External” method, we utilize the full
external dictionaries (i.e., r = 108 in Eq. (5)) for denoising.
For the “Internal” method, the overall framework is similar to

Fig. 6: Some sample images from our dataset (Dataset 3).

the method of [5]. A GMM model (with K = 32 Gaussians) is
directly learned from the PGs extracted from the given noisy
image without using any external data, and then the internal
orthogonal dictionaries are obtained via Eq. (2) to perform
denoising. All parameters of the “External” and “Internal”
methods are tuned to achieve their best performance.

We compare the three methods on the 60 cropped images
from Dataset 1 [42]. The average PSNR and run time are
listed in Table I. The best results are highlighted in bold. It can
be seen that “Guided Internal” method achieves better PSNR
than both “External” and “Internal” methods. In addition, the
“Internal” method is very slow because it involves online
GMM learning, while the “Guided Internal” method is only a
little slower than the “External” method. Figs. 7 and 8 show
the denoised images of two noisy images by the three methods.
One can see that the “External” method is good at recovering
large-scale structures (see Fig. 7) while the “Internal” method
is good at recovering fine-scale textures (see Fig. 8). By
utilizing external priors to guide the internal prior learning,
our proposed method can effectively recover both the large-
scale structures and fine-scale textures.

TABLE I: Average PSNR (dB) and Run Time (seconds) of
the “External”, “Internal”, and “Guided Internal” methods on
60 real-world noisy images (of size 500 × 500 × 3) cropped
from Dataset 1 [42].

Noisy External Internal Guided Internal
PSNR 34.51 38.21 38.07 38.75
Time — 21.19 312.67 22.26

D. Comparison with State-of-the-Art Denoising Methods

Comparison methods. We compare the proposed method
with state-of-the-art image denoising methods, including GAT-
BM3D [30], CBM3D [7], WNNM [13], TID [19], MLP [20],
DnCNN [22], CSF [24], TNRD [25], Noise Clinic (NC) [39],
[40], Cross-Channel (CC) [42], and Neat Image (NI) [44].
Among these methods, GAT-BM3D [30] is a state-of-the-art
Poisson noise reduction method. The method CBM3D [7] is a
state-of-the-art method for color image denoising and the noise
on color images is assumed to be additive white Gaussian.
The methods of WNNM, MLP, DnCNN, CSF, and TNRD are
state-of-the-art Gaussian noise removal methods for grayscale
images, and we apply them to each channel of color images
for denoising. NC is a blind image denoising method, and NI
is a set of commercial software for image denoising, which
has been embedded into Photoshop and Corel PaintShop. The
code of CC is not released but its results on the 15 cropped
images are available at [42]. Therefore, we only compare with
it on the 15 cropped images in Dataset 1 [42].

https://noise.visinf.tu-darmstadt.de/
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(a) Noisy [42]: 35.89dB (b) External: 39.05dB (c) Internal: 38.75dB (d) Guided Internal: 39.39dB (e) Mean Image [42]

Fig. 7: Denoised images of a region cropped from the real-world noisy image “Nikon D600 ISO 3200 C1” [42] by different
methods. The images are better to be zoomed-in on screen.

(a) Noisy [42]: 33.77dB (b) External: 36.97dB (c) Internal: 37.40dB (d) Guided Internal: 38.01dB (e) Mean Image [42]

Fig. 8: Denoised images of a region cropped from the real-world noisy image “Nikon D600 ISO 3200 C1” [42] by different
methods. The images are better to be zoomed-in on screen.

Noise level of comparison methods. For the CBM3D
method, the standard deviation of noise on color images should
be given as a parameter. For methods of WNNM, MLP, CSF,
and TNRD, the noise level in each color channel should be
input. For the DnCNN method, it is trained to deal with
noise in a range of levels 0 ∼ 55. We retrain the models
of discriminative denoising methods MLP, CSF, and TNRD
(using the released codes by the authors) at different noise
levels from σ = 5 to σ = 50 with a gap of 5. The denoising
is performed by processing each channel with the model
trained at the same (or nearest) noise level. The noise levels
(σr, σg, σb) in R, G ,B channels are assumed to be Gaussian
and can be estimated via some noise estimation methods [57],
[58]. In this paper, we employ the method [58] to estimate the
noise level for each color channel.

Results on Dataset 1. As described in section 4.2, there is a
mean image for each of the 11 scenes used in Dataset 1 [42],
and those mean images can be roughly taken as “ground truth”
images for quantitative evaluation of denoising algorithms.
We firstly perform quantitative comparison on the 15 cropped
images used in [42]. The results on PSNR (dB) and speed
(second) of GAT-BM3D, CBM3D, WNNM, TID, MLP, CSF,
TNRD, DnCNN, NC, NI and CC are listed in Table II (The
results of CC are copied from the original paper [42]). The
best PSNR results of each image are highlighted in bold. One
can see that on 8 out of the 15 images, our method achieves
the best PSNR values. CC achieves the best PSNR on 3 of the
15 images. It should be noted that in the CC method, a specific
model is trained for each camera and camera setting, while our
method uses the same model for all images. On average, our
proposed method has 0.27dB PSNR improvements over the
second best method CC and much higher PSNR gains over
other competing methods. The method GAT-BM3D does not
work well on most images. This is because real world noise

is much more complex than Poisson.
Figs. 9 and 10 show the denoised images of one scene

captured by Canon 5D Mark 3 at ISO = 3200 and Nikon D800
at ISO = 6400, respectively. We can see that GAT-BM3D,
CBM3D, TID, DnCNN, NC, NI and CC would either remain
noise or generate artifacts, while TNRD over-smooths much
the image. By using the external prior guided internal priors,
our proposed method preserves edges and textures better than
other methods while removing the noise, leading to visually
more pleasant outputs. Specifically, Fig. 10 is used to illustrate
the denoising performance of our method on fine-scale textures
such as hair, which is a very challenging task. Even the
“ground truth” mean image cannot show very clear details
of the hair. Though our method cannot reproduce clearly the
details (e.g., the local direction of hair in some regions), it
demonstrates the best visual results among the competing
methods. More comparisons on visual quality and SSIM [55]
index can be found in the supplementary file.

We then perform denoising experiments on the 60 images
we cropped from [42]. The average PSNR results are listed
in Table III (CC is not compared since the code is not
available). Again, our proposed method achieves much better
PSNR results than the other methods. The improvements of
our method over the second best method (TNRD) are 0.43dB
on PSNR. Fig. 11 shows the denoised images of one scene
captured by Nikon D800 at ISO = 3200. We can see again
that the proposed method obtain better visual quality than other
competing methods. More comparisons on visual quality and
SSIM can be found in the supplementary file.

Results on Dataset 2. In Table IV, we list the average PSNR
(dB) results of the competing methods on the 1000 cropped
images in the DND dataset [56]. We can see again that the
proposed method achieves better performance than the other
competing methods. Note that the “ground truth” images of
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TABLE II: PSNR(dB) results and Speed (sec.) of different methods on 15 cropped real-world noisy images used in [42].
Setting GAT-BM3D CBM3D WNNM TID MLP CSF TNRD DnCNN NI NC CC Ours

Canon 5D
31.23 39.76 37.51 37.22 39.00 35.68 39.51 37.26 37.68 38.76 38.37 40.50

ISO = 3200
30.55 36.40 33.86 34.54 36.34 34.03 36.47 34.13 34.87 35.69 35.37 37.05
27.74 36.37 31.43 34.25 36.33 32.63 36.45 34.09 34.77 35.54 34.91 36.11

Nikon D600
28.55 34.18 33.46 32.99 34.70 31.78 34.79 33.62 34.12 35.57 34.98 34.88

ISO = 3200
32.01 35.07 36.09 34.20 36.20 35.16 36.37 34.48 35.36 36.70 35.95 36.31
39.78 37.13 39.86 35.58 39.33 39.98 39.49 35.41 38.68 39.28 41.15 39.23

Nikon D800
32.24 36.81 36.35 34.94 37.95 34.84 38.11 35.79 37.34 38.01 37.99 38.40

ISO = 1600
33.86 37.76 39.99 35.19 40.23 38.42 40.52 36.08 38.57 39.05 40.36 40.92
33.90 37.51 37.15 35.26 37.94 35.79 38.17 35.48 37.87 38.20 38.30 38.97

Nikon D800
36.49 35.05 38.60 33.70 37.55 38.36 37.69 34.08 36.95 38.07 39.01 38.66

ISO = 3200
32.91 34.07 36.04 31.04 35.91 35.53 35.90 33.70 35.09 35.72 36.75 37.07
40.20 34.42 39.73 33.07 38.15 40.05 38.21 33.31 36.91 36.76 39.06 38.52

Nikon D800
29.84 31.13 33.29 29.40 32.69 34.08 32.81 29.83 31.28 33.49 34.61 33.76

ISO = 6400
27.94 31.22 31.16 29.86 32.33 32.13 32.33 30.55 31.38 32.79 33.21 33.43
29.15 30.97 31.98 29.21 32.29 31.52 32.29 30.09 31.40 32.86 33.22 33.58

Average 32.43 35.19 35.77 33.36 36.46 35.33 36.61 33.86 35.49 36.43 36.88 37.15
Time (s) 10.9 6.9 151.5 7353.2 16.8 19.3 5.1 79.2 0.6 15.3 NA 23.9

(a) Noisy [42]: 37.00dB (b) CBM3D [7]: 39.76dB (c) TID [19]: 37.22dB (d) TNRD [25]: 39.51dB (e) DnCNN [22]: 37.26dB

(f) NI [44]: 37.68dB (g) NC [39], [40]: 38.76dB (h) CC [42]: 38.37dB (i) Ours: 40.50dB (j) Mean Image [42]

Fig. 9: Denoised images of a region cropped from the real-world noisy image “Canon 5D Mark 3 ISO 3200 1” [42] by different
methods. The images are better to be zoomed-in on screen.

(a) Noisy [42]: 37.00dB (b) CBM3D [7]: 39.76dB (c) TID [19]: 37.51dB (d) TNRD [25]: 39.51dB (e) DnCNN [22]: 37.26dB

(f) NI [44]: 37.68dB (g) NC [39], [40]: 38.76dB (h) CC [42]: 38.37dB (i) Ours: 40.50dB (j) Mean Image [42]

Fig. 10: Denoised images of a region cropped from the real-world noisy image “Nikon D800 ISO 6400 1” [42] by different
methods. The images are better to be zoomed-in on screen.
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(a) Noisy [42]: 33.60dB (b) CBM3D [7]: 35.23dB (c) WNNM [13]: 36.50dB (d) CSF [24]: 36.21dB (e) TNRD [25]: 37.10dB

(f) DnCNN [22]: 34.43dB (g) NI [44]: 35.02dB (h) NC [39], [40]: 36.07dB (i) Ours: 37.50dB (j) Mean Image [42]

Fig. 11: Denoised images of a region cropped from the real-world noisy image “Nikon D800 ISO 3200 A3” [42] by different
methods. The images are better viewed by zooming in on screen.

this dataset have not been released yet, so we are not able to
calculate the PSNR and SSIM results for each noisy image
in this dataset, nor compare with the “ground truth” mean
image. However, one can submit the denoised images to the
project website and get the average PSNR and SSIM results on
the whole 1000 images. Fig. 12 shows the denoised images
of a scene “0001 2” captured by a Nexus 6P phone [56].
The noise level in this image is relatively high. Hence, this
image can be used to justify the performance of the proposed
method on real-world noisy images with lower PSNR (around
20dB). One can see that the proposed method achieves visually
more pleasing results than the other denoising methods. More
comparisons on visual quality and SSIM can be found in the
supplementary file.

Results on Dataset 3. Similar to Dataset 1 [42], there is
a “ground truth” image for each of the 10 scenes used in our
constructed Dataset 3. We perform quantitative comparison
on the 100 cropped images. The average PSNR results of
competing methods are listed in Table IV. We can see that
our proposed method achieves much better PSNR results
than the other methods. The improvements of our method
over the second best method (TNRD) is 0.16dB on PSNR.
Fig. 13 shows the denoised images of one scene captured
by Canon 80D at ISO = 12800. We can see again that the
proposed method removes the noise while maintains better
details (such as the vertical black shadow area) than other
competing methods. More comparisons on visual quality and
SSIM can be found in the supplementary file.

Comparison on speed. Efficiency is an important aspect to
evaluate the efficiency of algorithms. We compare the speed
of all competing methods except for CC. All experiments
are run under the Matlab2014b environment on a machine
with Intel(R) Core(TM) i7-5930K CPU of 3.5GHz and 32GB
RAM. The average running time (second) of the compared
methods on the 100 real-world noisy images is shown in Table
V. The least average running time are highlighted in bold. One
can easily see that the commercial software Neat Image (NI) is

the fastest method with highly optimized code. For a 512×512
image, NI costs about 0.6 second. The other methods cost from
5.2 (TNRD) to 152.2 (WNNM) seconds, while the proposed
method costs about 24.1 seconds. It should be noted that
GAT-BM3D, CBM3D, TNRD, and NC are implemented with
compiled C++ mex-function and with parallelization, while
WNNM, TID, MLP, CSF, DnCNN, and the proposed method
are implemented purely in Matlab.

V. CONCLUSION

We proposed a new prior learning method for the real-
world noisy image denoising problem by exploiting the useful
information in both external and internal data. We first learned
Gaussian Mixture Models (GMMs) from a set of clean external
images as general image prior, and then employed the learned
GMM model to guide the learning of adaptive internal prior
from the given noisy image. Finally, a set of orthogonal
dictionaries were output as the external-internal hybrid prior
models for image denoising. Extensive experiments on three
real-world noisy image datasets, including a new dataset
constructed by us by different types of cameras and camera
settings, demonstrated that our proposed method achieves
much better performance than state-of-the-art image denoising
methods in terms of both quantitative measure and visual
perceptual quality.

APPENDIX A
CLOSED-FORM SOLUTION OF THE WEIGHTED SPARSE

CODING PROBLEM (7)

For notation simplicity, we ignore the indices n,m, t in
problem (7). It turns into the following weighted sparse coding
problem:

minα ‖y −Dα‖22 +
∑3p2

j=1
λj |αj |. (14)

Since D is an orthogonal matrix, problem (14) is equivalent
to:

minα ‖DTy −α‖22 +
∑3p2

j=1
λj |αj |. (15)
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(a) Noisy [40] (b) CBM3D [7] (c) WNNM [13] (d) MLP [20] (e) CSF [24]

(f) TNRD [25] (g) DnCNN [22] (h) NI [44] (i) NC [39], [40] (j) Ours

Fig. 12: Denoised images by different methods of the real-world noisy image “0001 2” captured by a Huawei Nexus 6P phone
[56]. Note that the ground-truth clean image of the noisy input is not publicly released yet.

TABLE III: Average PSNR(dB) results of different methods on 60 real-world noisy images cropped from [42].
Methods GAT-BM3D CBM3D WNNM MLP CSF TNRD DnCNN NI NC Ours
PSNR 34.33 36.34 37.67 38.13 37.40 38.32 34.99 36.53 37.57 38.75

TABLE IV: Average PSNR(dB) results of different methods on the 1000 real-world noisy images from the DND dataset [56].
Methods GAT-BM3D CBM3D WNNM MLP CSF TNRD DnCNN NI NC Ours
PSNR 30.07 32.14 33.28 34.02 33.87 34.15 32.41 35.11 36.07 36.41

TABLE V: Average PSNR(dB) results of different methods on 100 real-world noisy images cropped from our new dataset.
Methods GAT-BM3D CBM3D WNNM MLP CSF TNRD DnCNN NI NC Ours
PSNR 33.54 37.14 35.18 37.34 37.07 37.48 34.74 35.70 36.76 37.64

(a) Noisy [42]: 36.51dB (b) CBM3D [7]: 37.91dB (c) WNNM [13]: 38.23dB (d) CSF [24]: 39.02dB (e) TNRD [25]: 39.26dB

(f) DnCNN [22]: 36.52dB (g) NI [44]: 37.52dB (h) NC [39], [40]: 37.53dB (i) Ours: 39.41dB (j) Mean Image

Fig. 13: Denoised images of a region cropped from the real-world noisy image “Canon 80D ISO 12800 IMG 2321” in our
new dataset by different methods. The images are better viewed by zooming in on screen.

For simplicity, we denote z = DTy. Here we have λj > 0,
j = 1, ..., 3p2, then problem (15) can be written as:

minα
∑3p2

j=1
((zj −αj)2 + λj |αj |). (16)

The problem (16) is separable w.r.t. each αj and hence can be
simplified to 3p2 independent scalar minimization problems:

minαj
(zj −αj)2 + λj |αj |, (17)

where j = 1, ..., 3p2. Taking derivative of αj in problem (17)
and setting the derivative to be zero. There are two cases for
the solution.

(a) If αj ≥ 0, we have 2(αj−zj)+λj = 0, and the solution
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TABLE VI: Average Speed (sec.) results of different methods on 100 real-world noisy images cropped from our new dataset.
Methods GAT-BM3D CBM3D WNNM MLP CSF TNRD DnCNN NI NC Ours

Time 11.1 6.9 152.2 17.1 19.5 5.2 79.5 0.6 15.6 24.1

is α̂j = zj − λj

2 ≥ 0. So zj ≥ λj

2 > 0, and the solution α̂j
can be written as α̂j = sgn(zj) ∗ (|zj | − λj

2 ), where sgn(•) is
the sign function.

(b) If αj < 0, we have 2(αj − zj) − λj = 0 and the
solution is α̂j = zj +

λj

2 < 0. So zj < −λj

2 < 0, and the
solution α̂j can be written as α̂j = sgn(zj) ∗ (−zj − λj

2 ) =

sgn(zj) ∗ (|zj | − λj

2 ).
In summary, we have the final solution of the weighted

sparse coding problem (14) as:

α̂ = sgn(DTy)�max(|DTy| − λ, 0), (18)

where λ = 1
2 [λ1, λ2, ..., λ3p2 ]> is the vector of regularization

parameter and � means element-wise multiplication.

APPENDIX B
PROOF OF THE THEOREM 1

Let A ∈ R(3p2−r)×M ,Y ∈ R3p2×M be two given data
matrices. Denote by E ∈ R3p2×r the external subdictionary
and D ∈ R3p2×(3p2−r) the internal subdictionary. For sim-
plicity, we assume 3p2 ≥ M . The problem in Theorem 1 is
as follows:

D̂ = arg minD ‖Y − DA‖2F
s.t. D>D = I(3p2−r)×(3p2−r), E>D = 0r×(3p2−r).

(19)

Proof. We firstly prove the necessary condition. Since
D>D = I(3p2−r)×(3p2−r), we have

D̂ = arg minD ‖Y − DA‖2F = arg maxD Tr(AY>D)

s.t. D>D = I(3p2−r)×(3p2−r), E>D = 0r×(3p2−r).
(20)

The Lagrange function is L = Tr(AY>D) − Tr(Γ1(D>D −
I(3p2−r)×(3p2−r)))− Tr(Γ2(D>E)), where Γ1 and Γ2 are the
Lagrange multipliers. Take the derivative of L w.r.t. D and set
it to be matrix 0 of conformal dimensions, we can get

∂L/∂D = YA>−D(Γ1 +Γ>1 )−EΓ>2 = 03p2×(3p2−r). (21)

Since D>D = I(3p2−r)×(3p2−r) and E>D = 03p2×(3p2−r), by
left multiplying both sides of the Eq. (22) by E>, we have

E>YA> = Γ>2 . (22)

Put the Eq. (22) back into Eq. (21), we have

(I3p2×3p2 − EE>)YA> = D(Γ1 + Γ>1 ). (23)

Right multiplying both sides of Eq. (23) by D>, we have

(I3p2×3p2 − EE>)YA>D> = D(Γ1 + Γ>1 )D>. (24)

This shows that (I3p2×3p2 − EE>)YA>D> is a symmet-
ric matrix of order 3p2 × 3p2. Then we perform economy
(or reduced) singular value decomposition (SVD) [51] on
(I3p2×3p2 − EE>)YA> = UΣV>, there is

(I3p2×3p2 − EE>)YA>D> = UΣV>D> = DVΣU>. (25)

Hence, we have U = DV , or equivalently D̂ = UV>. The
necessary condition is proved.

Now we prove the sufficient condition. If D̂ = UV>, then
D̂>D̂ = I(3p2−r)×(3p2−r). To prove E>D̂ = 03p2×(3p2−r),
we left multiply both sides of Eq. (25) by E> and
have 03p2×(3p2−r) = E>(I3p2×3p2 − EE>)YA>D̂> =

E>UΣV>D̂> = E>UΣU> . It means that E>UΣU> =
03p2×3p2 . This only happens when E>U = 03p2×(3p2−r) since
rank(Σ) = 3p2 − r and UΣU> is positive definite. Then
E>D̂ = E>UV> = 03p2×(3p2−r).

Finally we prove that D̂ = UV> is the solution of

D̂ = arg minD ‖Y − DA‖2F = arg maxD Tr(Y>DA). (26)

Note that by cyclic perturbation which retains the trace
unchanged and due to E>D̂ = 03p2×(3p2−r), we
have Tr(Y>D̂A) = Tr(YA>D̂>) = Tr((I3p2×3p2 −
EE>)YA>D̂>) = Tr(UΣV>VU>) = Tr(Σ). For every D sat-
isfying that D>D = I(3p2−r)×(3p2−r), E>D = 03p2×(3p2−r),
we have Tr(Y>DA) = Tr((I3p2×3p2 − EE>)YA>D>) =
Tr(UΣV>D>) = Tr(ΣV>D>U). By using a generaliza-
tion version [59] of the Kristof’s Theorem [60], we have
Tr(Y>DA) = Tr(ΣV>D>U) ≤ Tr(Σ). The equality is
obtained at V>D>U = I(3p2−r)×(3p2−r), i.e., D = UV> = D̂.
This completes the proof.

APPENDIX C
PROOF OF THE THEOREM 2

Before we prove the Theorem 2, we need firstly prove the
following Lemma 1.

Lemma 1: Let E ∈ R3p2×r be an orthogonal matrix with
E>E = Ir×r, then rank(I3p2×3p2 − EE>) ≥ 3p2 − r.

Proof. Since rank(EE>) ≤ min{rank(E), rank(E>)} = r
and rank(EE>) ≥ rank(E) + rank(E>) − r = 2r − r = r
by Sylvester’s inequality, we have rank(EE>) = r. Then,
rank(I3p2×3p2 − EE>) ≥ rank(I3p2×3p2) − rank(EE>) ≥
3p2 − r.

The rank(Σ) (Σ is defined in Theorem 1) depends
on rank(I3p2×3p2 − EE>), rank(Y) and rank(A). Note
that rank(Y) ≥ M and rank(A) ≥ min{3p2,M} and
rank(I3p2×3p2 − EE>) ≥ 3p2 − r. Hence, rank(Σ) ≤
min{3p2 − r,M}.

Now we prove the Theorem 2:

Proof. a) If (I3p2×3p2 − EE>)YA> ∈ R3p2×(3p2−r) is
nonsingular, i.e., rank(Σ) = 3p2 − r, Σ may have distinct
or multiple non-zero singular values. In the SVD [51] of
(I3p2×3p2 − EE>)YA> = UΣV>, the singular vectors in U
and V can be determined up to orientation. Hence, we can
reformulate it as

(I3p2×3p2 − EE>)YA> = U∗KuΣKv(V∗)>, (27)
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where U∗ ∈ R3p2×(3p2−r) and V∗ ∈ R(3p2−r)×(3p2−r) are
arbitrarily orientated singular vectors of U and V , respectively.
The Ku and Kv are diagonal matrices with +1 or −1 as diag-
onal elements in arbitrary distribution. Σ ∈ R(3p2−r)×(3p2−r)

is a diagonal matrix with singular values in non-increasing
order, i.e., Σ11 ≥ Σ22 ≥ ... ≥ Σ(3p2−r)(3p2−r) ≥ 0. If we
fix Ku, then Kv is uniquely determined to meet the above
requirements of Σ. If the orientations of the singular vectors
of U∗ are fixed, then U = U∗Ku is determined, so do the
orientations of the singular vectors of V∗ and V> = Kv(V∗)>.
In this case, the solution of D̂ = UV> = U∗KuKv(V∗)>
is unique. When Σ has multiple singular values, the unique
solution of D̂ can be proved in a similar way.

b) If (I3p2×3p2−EE>)YA> is singular, i.e., 0 ≤ rank(Σ) <
3p2 − r, and Σ has 3p2 − r − rank(Σ) (at least one) zero
singular values. The discussion in a) can still be applied to the
singular vectors corresponding to the nonzero singular values,
and the production of these singular vectors in U and V is
still unique. However, the singular vectors corresponding to
the zero singular values could be in arbitrary orientations as
long as they satisfy the conditions of U>U = V>V = VV> =
I(3p2−r)×(3p2−r). Since U ∈ R3p2×(3p2−r), UU> no longer
equals to the identity matrix of order 3p2 × 3p2. From Eq.
(25), we have

UΣV>D> = DVΣU> (28)
Right multiplying both sides of Eq. (28) by DV and left
multiplying each side by U>, we have

Σ = U>DVΣU>DV (29)
Hence, ∆ = U>DV ∈ R(3p2−r)×(3p2−r) is a diagonal matrix,
the diagonal elements of which are

∆ii =

{
1 if 1 ≤ i ≤ rank(Σ);
±1 if rank(Σ) < i ≤ 3p2 − r.

Thus, we have D = U∆V>. That is, if rank(Σ) < 3p2 −
r, once we get the solution of D̂ = UV> in problem (19),
D = U∆V> with suitable ∆ is also the solution of problem
(19). In fact, the number of solutions D̂ for problem (19) is
23p2−r−rank(Σ) given fixed U and V .
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