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a b s t r a c t 

S oftware D efect P rediction ( SDP ) aims to detect defective modules to enable the reasonable allocation 

of testing resources, which is an economically critical activity in software quality assurance. Learning ef- 

fective feature representation and addressing class imbalance are two main challenges in SDP. Ideally, 

the more discriminative the features learned from the modules and the better the rescue performed 

on the imbalance issue, the more effective it should be in detecting defective modules. In this study, 

to solve these two challenges, we propose a novel framework named LDFR by L earning D eep F eature 

R epresentation from the defect data for SDP. Specifically, we use a deep neural network with a new hy- 

brid loss function that consists of a triplet loss to learn a more discriminative feature representation of 

the defect data and a weighted cross-entropy loss to remedy the imbalance issue. To evaluate the effec- 

tiveness of the proposed LDFR framework, we conduct extensive experiments on a benchmark dataset 

with 27 defect data (each with three types of features), using three traditional and three effort-aware 

indicators. Overall, the experimental results demonstrate the superiority of our LDFR framework in de- 

tecting defective modules when compared with 27 baseline methods, except in terms of the indicator of 

Precision. 

© 2019 Published by Elsevier Inc. 
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. Introduction 

Most exceptions and failures during the process of software ex-

cution are rooted in defects in software modules (such as classes

nd files). Although tremendous effort s have been made to secure

rogramming, software defects are still inevitable. Therefore, de-

ecting defective software modules before releasing software arti-

acts is a critical issue that should not be overlooked in the soft-

are development lifecycle ( Fenton and Ohlsson, 20 0 0 ). 

To identify highly risky software modules that are potentially

efective ( Song et al., 2011 ), S oftware D efect P rediction ( SDP ) can

ffectively guide the direction of software testing by allocating the

imited resources available for testing and verification to highly

isky modules. It is therefore beneficial in improving software qual-
� Fully documented templates are available in the elsarticle package on CTAN 
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ty and reliability, which leads to safer and more robust software

rtifacts. 

Many SDP methods have been proposed, and most use machine

earning approaches ( Lessmann et al., 2008; Shepperd et al., 2014 ),

hich can be categorized from two perspectives. From the per-

pective of whether they use historical defect information for SDP,

xisting studies can be roughly divided into supervised SDP and

nsupervised SDP. The supervised SDP uses historical defect data

ith labels to train a classification or regression model, and the

odel is then used to determine the defect information of the

ew software modules. In this study, the defect data consist of a

et of module features that characterize the modules, and the de-

ect information that denotes the number of defects or just binary

abels. The binary labels indicate whether the corresponding mod-

les contain defects. Unlike the supervised SDP, the unsupervised

DP relies only upon the module features to partition the mod-

les into different groups (usually two groups: the defective group

nd the non-defective group) using clustering methods, such as k-

eans clustering ( Zhong et al., 2004 ), affinity propagation cluster-

https://doi.org/10.1016/j.jss.2019.110402
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.110402&domain=pdf
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mailto:jinliu@whu.edu.cn
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ing ( Yang et al., 2008 ), and spectral clustering ( Zhang et al., 2016 ).

From the perspective of whether the defect information is binary,

the supervised SDP can be further divided into defect-prone pre-

diction and defect-number prediction. The former scenario usu-

ally trains a classification model on the labeled defect data and

then predicts whether the new modules will be defective. Widely

used classification models include Bayesian networks ( Okutan and

Yıldız, 2014 ), logistic regression ( Tantithamthavorn et al., 2017 ), de-

cision tree ( Wang and Yao, 2013 ), nearest neighbor ( Jing et al.,

2015 ), random forest ( Yang et al., 2017 ), and support vector ma-

chine ( Arora and Saha, 2018 ). The latter scenario generally uses the

module features and defect number to fit a regression model to de-

scribe their relationship, and then estimates the number of defects

in new modules. In this study, we focus on the former scenario,

defect-prone prediction, because it is a more general form of SDP. 

The performance of SDP is greatly affected by the feature rep-

resentation of the original defect data because the initial collected

module features may not well represent the intrinsic structure hid-

den behind the original defect data ( Wang et al., 2016b; Yang et al.,

2015 ). Motivated by the success of the application of deep learn-

ing techniques to learn features in various areas (such as com-

puter vision ( Cheng et al., 2016 ) and natural language processing

( Collobert and Weston, 2008 )), in this paper, we propose a new

D eep N eural N etwork ( DNN )-based framework, named L earning

D eep F eature R epresentation ( LDFR ), to learn a high-level feature

representation for the defect data. In our LDFR framework, we in-

troduce a novel hybrid loss function to the DNN to learn more

discriminative deep features while alleviating the imbalance issue.

More specifically, the proposed hybrid loss function consists of an

advanced triplet loss function ( Schroff et al., 2015 ) and a weighted

cross-entropy loss function. The triplet loss function has the advan-

tage of maximizing the interclass variations and minimizing the

intraclass variations among the learned features ( Parchami et al.,

2017 ). In other words, the learned features favor smaller distances

between module pairs with the same label and larger distances

for module pairs with different labels. The commonly used cross-

entropy loss function ( De Boer et al., 2005 ) in DNNs aims to max-

imize the discriminative property among the learned deep fea-

tures of the training modules. In addition, because SDP emphases

the detection of defective software modules, the misclassification

cost of identifying a defective module as non-defective should be

higher than that of identifying a non-defective module as defec-

tive. However, the cross-entropy loss function treats the two cases

equally. In this study, we broaden its application by extending the

cross-entropy loss to a weighted form that can punish more on

the cost when the defective modules are predicted to be non-

defective. With the joint supervision of triplet loss and weighted

cross-entropy loss, we can train the DNN to attain more effective

feature representation. To the best of our knowledge, this study is

among the first to introduce the triplet loss into SDP and combine

it with a weighted cross-entropy loss to address both the feature

representation learning and the class imbalance issue for SDP. 

To evaluate the effectiveness of our proposed LDFR frame-

work, we conduct extensive experiments on a benchmark de-

fect dataset that includes 14 projects with 27 total versions. Each

project contains three types of metrics (a.k.a. features): C hidamber

and K emerer ( CK ) metrics, process metrics, and network metrics.

We use six indicators as our performance measurement, including

three traditional indicators (i.e., Precision, Recall, and F-measure)

and three effort-aware indicators (i.e., EAPrecision, EARecall, and

EAF-measure ( Xu et al., 2018 )). The main performance improve-

ments in our two research questions are summarized as follows: 

• RQ1: Compared with the best average indicator values among

four variant methods of LDFR, LDFR achieves average improve-

ments of 7.6%, 13.5%, 15.3%, 7.1%, and 11.6% under defect data
with CK features, of 5.1%, 11.5%, 16.0%, 9.8%, and 12.6% under

defect data with process features, and of 6.4%, 10.1%, 14.7%,

7.9%, and 11.8% under defect data with network features in

terms of Recall, F-measure, EAPrecision, EARecall, and EAF-

measure, respectively. The average Precision obtained by LDFR

is only lower than that obtained by one variant method under

three types of defect data. 
• RQ2: Compared with the best average indicator values among

23 existing imbalanced learning methods, LDFR achieves aver-

age improvements of 5.5%, 16.5%, and 23.2% under defect data

with CK features, of 13.2%, 29.5%, and 22.4% under defect data

with process features, and of 7.0%, 25.3%, and 12.4% under de-

fect data with network features in terms of F-measure, EARe-

call, and EAF-measure, respectively. The average Precision, Re-

call, and EAPrecision obtained by LDFR are inferior to those ob-

tained by several baseline methods. 

In summary, we highlight the major contributions as follows: 

1. We propose a novel LDFR framework to learn deep feature rep-

resentation for the defect data. LDFR combines a triplet loss and

a weighted cross-entropy loss for DNN training. The features in-

duced by the triplet loss simultaneously favor compactness for

the intraclass modules and dispersion for the interclass mod-

ules. The feature induced by the weighted cross-entropy loss

can remedy the model bias to identify more defective modules.

2. We conduct large-scale empirical experiments on 27 project

versions. As each project contains three types of metrics, we

could conduct a thorough exploration of the effectiveness of

our proposed LDFR framework on defect data with various fea-

ture types. 

3. We perform an extensive performance comparison of our LDFR

framework and 27 baseline methods with both traditional and

effort-aware indicators. Compared with the baseline methods,

the results demonstrate that LDFR usually achieves encouraging

performance in terms of five indicators except Precision. 

The rest of this article is structured as follows: In Section 2 , we

riefly introduce the background of SDP and triplet loss based fea-

ure representation learning. In Section 3 , we present the technical

etails of our LDFR framework. In Section 4 , we introduce the ex-

erimental design of our study, such as the benchmark dataset, the

valuation indicators, and the parameter setting. In Section 5 , we

eport and analyze the experimental results in detail. In Section 6 ,

e discuss the impacts of different classifiers and feature types on

he performance of LDFR. In Section 7 , we list the potential threats

o validity. In Section 8 , we describe the related work. In Section 9 ,

e conclude our study. 

. Background 

.1. Software defect prediction 

In recent decades, numerous studies have examined the realm

f SDP. In general, most studies focus mainly on defect-prone pre-

iction, that is, predicting whether modules are defective or non-

efective. 

The most popular way to identify whether new modules are

efective is to train a supervised classification model on the his-

orical labeled defect data and then use the learned model to pre-

ict the labels of upcoming software modules. Many studies de-

oted to this research domain have proposed various SDP meth-

ds. These studies can be roughly divided into three groups. The

rst group focuses on the use of feature selection methods to iden-

ify a subset of initial features. This selected feature subset replaces

he original set to train the classification models. Most feature

election methods belong to filter-based feature-ranking meth-
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ds or wrapper-based feature subset selection methods. Filter-

ased feature-ranking methods individually calculate an impor-

ance score for each feature towards the class label and then rank

he features based on their scores, and finally the top-ranked fea-

ures are reserved. Classical filter-based feature-ranking methods

nclude chi-square, information gain, and ReliefF ( Xu et al., 2016;

hotra et al., 2017 ). Wrapper-based feature subset selection meth-

ds evaluate the performance of various feature subsets for a given

ndicator under a predetermined classifier and select the feature

ubset that can achieve the best indicator value ( Xu et al., 2016;

hotra et al., 2017 ). The second group concentrates on the use of

arious imbalance learning methods to alleviate the class imbal-

nce issue of the defect data. The imbalance trait will lead gen-

ral classification models’ bias to predict the modules as the ma-

ority class. Most imbalance learning methods can be classified as

ampling-based, ensemble-based, or cost-sensitive-based methods 

 Huang et al., 2016 ). The third group concerns the effectiveness of

he classification models for SDP. Previous researchers ( Lessmann

t al., 2008; Challagulla et al., 2008; Mende and Koschke, 2009;

hotra et al., 2015 ) have conducted empirical studies to compare

he performance differences of various classification models for

DP. 

As deep learning appears, some recent studies have come closer

o our study by applying deep leaning techniques to a defect pre-

iction task. Yang et al. (2015) employed a probabilistic generation

odel, called D eep B rief N etwork ( DBN ) ( Salakhutdinov, 2015 ),

or just-in-time defect prediction. They mainly used the original

BN as an unsupervised feature learning method to preserve as

any characteristics of the original feature as possible while re-

ucing the feature dimensions. In contrast, our study mainly pro-

oses a novel deep learning method with a well-designed hybrid

oss function to learn the feature representation of the defect data.

his is a discriminative model that not only retains the original

haracteristics but also automatically adjusts the distances among

he modules with the same or different labels. Manjula and Flo-

ence (2018) proposed a hybrid approach based on DNN for defect

lassification, but the innovation of their work is that an improved

enetic algorithm is introduced to select a feature subset that was

ater used as the inputs of a general DNN method later. Other stud-

es Wang et al. (2016a) ; Li et al. (2017a) ; Phan et al. (2018) ; Dam

t al. (2017, 2018) have used existing deep learning models, such as

BN, convolutional neural network, and long short-term memory,

o extract features directly from the source code of the projects.

he main difference between our study and the others is that we

earn features with a novel proposed deep learning method from

arious feature representations (i.e., object-oriented design fea-

ures, process features, and network features) of the source code,

ot directly from the code. 

.2. Triplet loss based feature representation learning 

Since its introduction, the triplet loss paradigm has been

uccessfully applied to learn discriminate feature represen-

ation in many applications, including fingerprint matching

hang et al. (2017) , speaker verification Zhang and Koishida (2017) ,

ideo retrieval Dong and Li (2017) , person re-identification

heng et al. (2016) , and face recognition Parkhi et al. (2015) . Triplet

oss-based feature representation learning aims to find an em-

edded feature space for the training samples because the ini-

ial features may not well encode the data space. In the em-

edded space, the distances between the samples that share the

ame labels are fixed or decreased, whereas the distances be-

ween samples with different labels are increased to some ex-

ent. Schroff et al. (2015) were the first to propose the triplet loss

unction to map images of faces into a compact feature space in

hich the Euclidean distances directly represent the similarity of
he faces. They used a deep convolutional network to optimize

eature embedding and achieved the best face recognition perfor-

ance at that time. To scale triplet loss-based feature learning to a

arge-scale dataset, Ming et al. (2017) combined this method with

nterclass/intraclass distance feature learning to reduce the number

f triplets for training. The experimental results showed that their

ethod could achieve performance comparable to that of Schroff

t al. with fewer trained triplets. Liao et al. (2017) proposed a

eighted triplet loss function by adding two weights to further

educe the interclass distances while increasing the intraclass dis-

ances for person re-identification. Su et al. (2017) proposed a face

ecognition framework via an adaptive triplet loss function with a

oftmax function. The softmax function was used to initiate the pa-

ameters of the neural network, and the adaptive triplet loss was

sed to generate high-quality triplets. 

Unlike the studies above which mainly used triplet loss to learn

ffective f eature representation for images, we focus on learning

iscriminative features for software modules from the defect data

ith collected features. As this loss remains uninvestigated in the

oftware engineering domain, we are among the first to introduce

he triplet loss-based feature representation learning to defect pre-

iction. In addition, we design a new DNN framework that com-

ines the triplet loss function with a weighted cross-entropy loss

unction to learn more discriminative feature representation from

he collected module features. 

. Our LDFR framework 

.1. Triplet loss-based feature learning 

One challenge of SDP is to increase the separability of modules

hat belong to different classes. This issue can be addressed by us-

ng triplet loss to learn highly discriminative feature representation

or the modules with different labels. Here, we describe the details

f the triplet loss function. 

Assume that the feature set of defect data as X = { x i } n i =1 
∈

 

n ×m and the label set as Y = { y i } n i =1 
∈ R 

n ×1 , where x i =
 x i 1 , x i 2 , . . . , x im 

] ∈ R 

m denotes the i th module and y i ∈ {0, 1} de-

otes the label of x i . y i = 0 indicates that the corresponding mod-

le x i is non-defective, whereas y i = 1 indicates that the corre-

ponding module x i is defective. The input variables of the feature

epresentation learning are the feature set and the label set. The

oal of feature representation is to learn a mapping representa-

ion f ( x i ) for the module x i from the original feature space R 

m into

 d -dimensional embedding space R 

d . In this new feature space,

he distances of the modules within the same class decrease while

he distances of the modules between different classes increase.

he embedding is constrained on the d -dimensional hypersphere

 Schroff et al., 2015 ), i.e., ‖ f ( x ) ‖ 2 = 1 . Each triplet consists of three

lements ( x i , x 
+ 
i 
, x −

i 
) that are defined as follows: 

• x i : an anchor example, i.e., a module, 
• x + 

i 
: a positive example, i.e., the module with the same label as

x i , 
• x −

i 
: a negative example, i.e., the module with different label as

x i . 

Triplet loss is motivated by nearest-neighbor classification and

trives to ensure that the anchor is closer to the positive mod-

le than the negative module in the embedded feature space. This

rocess is visualized in Fig. 1 . Assume that the set of all possible

riplets in the training set is τ with the cardinality N , the following

elationship then holds true in the embedded feature space: 

( f ( x i ) , f ( x 
+ 
i 
)) + α < d( f ( x i ) , f ( x 

−
i 
)) , ∀ ( x i , x 

+ 
i 
, x −

i 
) ∈ τ, (1)

here d(·) = ‖ · ‖ 2 2 is the Euclidean distance, α is a margin be-

ween the positive and negative pairs. The triplet loss (Loss1) is
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Fig. 1. An illustrate of the merit of triplet loss. 

Fig. 2. An neural structure of the DNN. 
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then defined as follows 

Loss 1 = 

N ∑ 

i =1 

[ d( f ( x i ) , f ( x 
+ 
i 
)) − d( f ( x i ) , f ( x 

−
i 
)) + α] + , (2)

where [ ·] + indicates that the value of · is used as the loss if it

is positive, otherwise, the value of · equals to 0. More specifi-

cally, when the margin between the distance d( f ( x i ) , f ( x 
−
i 
)) and

the distance d( f ( x i ) , f ( x 
+ 
i 
)) is less than α (i.e., after subtracting

a positive margin α, the negative module x −
i 

is closer to the an-

chor than the positive module x + 
i 

), it will cause loss. Otherwise,

the loss is set as 0. The optimized objective function is to minimize

the triplet loss. When the loss of the triplet ( x i , x 
+ 
i 
, x −

i 
) is larger

than 0, Eq. 2 is a convex function that can be solved by gradient

derivation. Its gradients with respect to f ( x i ), f ( x + 
i 
) , and f ( x −

i 
) are

derived as follows: 

∂Loss 1 

∂ f ( x i ) 
= 2( f ( x i ) − f ( x + 

i 
)) − 2( f ( x i ) − f ( x −

i 
)) 

= 2( f ( x −
i 
) − f ( x + 

i 
)) . (3)

∂Loss 1 

∂ f ( x + 
i 
) 

= 2( f ( x i ) − f ( x + 
i 
)) · (−1) = 2( f ( x + 

i 
) − f ( x i )) . (4)

∂Loss 1 

∂ f ( x −
i 
) 

= −2( f ( x i ) − f ( x −
i 
)) · (−1) = 2( f ( x i ) − f ( x −

i 
)) . (5)
.2. Deep neural network (DNN) 

In general, DNN consists of three types of network layer. The

rst type of layer is called the input layer, which corresponds to

he input units, that is, the module features, in this study. The sec-

nd type of layer is called the hidden layer, which is used to trans-

orm the features from the previous nearest layer. The last type of

ayer is called the output layer, which gives the specified outcomes,

uch as the labels of the input modules for SDP. After obtaining

he outcomes, the loss value can be calculated for parameter op-

imization with the back-propagation algorithm ( Rumelhart et al.,

986 ). In general, the nodes among various layers are fully con-

ected, whereas the nodes within the same layer have no direct

onnections. In addition, the number of the nodes in the input and

utput layers are assigned for specific applications, whereas the

umber of hidden layers and the number of nodes for each hid-

en layer are designed empirically. 

Fig. 2 depicts a basic structure of DNN with fully connected

etworks. For example, the output of the first hidden layer is

h = 

∑ m 

j=1 g(ω jh · x i j ) , where ω jh denotes the input weight vector

onnecting the j th input node and the h th hidden node, x ij de-

otes the j th input vector of the module x i , and g ( · ) is a nonlin-

ar activation function. In addition, the output of the output layer

s y j = 

∑ q 
r=1 

g(v r j · b r ) , where v rj denotes the output weight vec-

or connecting the j th output node and the r th hidden node, and

 r is the output value of the r th hidden node. y j is the probabil-
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Fig. 3. Our feature representation learning architecture with the hybrid loss function. 
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ty that a given module x i belongs to the j th class. Note that each

idden node can have a bias term; we omit the bias terms from

ig. 2 for simplicity. The output of DNN is a vector of probability

alues for which each element corresponds to a class label. The

lass label with the highest probability indicates that the module

elongs to this class. The classification loss is calculated as the gap

etween the actual probability and the output probability of the

odule label by the DNN. Note that, in this study, the actual prob-

bilities for the defective and non-defective modules are 1.0 and

.0, respectively. This loss is used to train the DNN to optimize

he network parameters to maximize the probability of the correct

lass label and minimize the probability of the incorrect class label,

hat is, to minimize the classification loss over the given training

et. 

The training process of the DNN consists of two alternative up-

ating steps: the forward transmission of the information and the

ack-propagation of the loss. As showed in Fig. 2 , given a set of

nput vectors of a defective modules in the forward transmission

rocess, the module features and parameter information spread

he neural network architecture to predict the label of the input

odule. If the network identifies the module as non-defective, the

oss will be generated. In the back-propagation process, the loss is

sed to update the network parameters with a hill-climbing opti-

ization process called gradient descent ( Sze et al., 2017 ). 

Traditional DNNs normally use cross-entropy loss as the loss

unction to train the neural network parameters. For a mod-

le x i , the corresponding cross-entropy loss ( Loss 2) is defined as

ollows: 

oss 2 = −
C ∑ 

j=1 

y ′ j ( x i ) log y j ( x i ) , (6)

here y ′ 
j 
( x i ) denotes the ground-truth label (a.k.a. actual label)

robability of module x i , y j ( x i ) denotes the output probability of

odule x i by DNN, and C denotes the number of classes. There are

nly two classes in SDP (the defective class and the non-defective

lass), that is, C = 2 in this study. The optimized objective func-

ion is to minimize the cross-entropy loss, that is, to minimize the

lassification error. 

Here, we give an example of how to calculate the cross-entropy

oss. In the multiple classification scenario, given a sample with

round-truth class probability as y ′ = (0 . 0 , 1 . 0 , 0 . 0) , we feed the

ample into a DNN model and the model outputs the probability of

he sample as y = (0 . 3 , 0 . 6 , 0 . 1) . The cross-entropy loss of the sam-

le is then −0 . 0 × log 0 . 3 − 1 . 0 × log 0 . 6 − 0 . 0 × log 0 . 1 . The loss is

sed for a back-propagation algorithm to nudge the network pa-

ameters so that y gradually approaches to y ′ . 

.3. Weighted cross-entropy loss 

Software defect data usually exhibit class imbalance that leads

eneral classification models to predict that the defective mod-

les are non-defective. However, in the context of SDP, the cost
i.e., loss) of classifying an actual defective module as non-defective

hould be higher than the cost of classifying an actual non-

efective module as defective. The reason is that misclassifying a

efective module may result in failure of the software artifacts,

hereas misclassifying a defective module only consumes addi-

ional test resources. Unfortunately, cross-entropy loss treats the

wo losses equally. To remedy this deficiency, in this study, we

se a weighted cross-entropy loss function designed specifically for

DP as follows 

oss 2 

′ = −
C ∑ 

j=1 

w j ∗ y ′ j ( x i ) log y j ( x i ) . (7)

.4. Our proposed hybrid loss function 

This study is among the first to use a combination of the two

oss functions to optimize the network parameters to learn better

eature representation toward the software modules. Our H ybrid

oss function ( HLoss ) is defined as 

Loss = Loss 1 + Loss 2 

′ . (8)

The intuition here is that the triplet loss function is used to en-

ure that the learned features are more distinguishable, whereas

he weighted cross-entropy loss is used to alleviate the class im-

alance issue. The goal of combining the two loss functions is

o learn a more effective f eature representation for classification.

ig. 3 depicts our feature representation learning network archi-

ecture. Given a training set, we sample mini batches of the triplet

et because consideration of all triplets is very time consuming and

sually infeasible due to limitations in memory size. Each triplet

ember is then fed independently into three identical DNNs with

hared parameters, and the generated feature embeddings are used

o calculate the triplet loss and weighted cross-entropy loss. Fi-

ally, the hybrid loss that combines the above two losses is used to

pdate the DNN parameters with the back-propagation algorithm

o further reinforce the learned feature representation. 

.5. Overall framework 

Fig. 4 depicts a flow-chart of our proposed LDFR framework. We

rst process the defect data according to various types of features.

s a result, for each project, we obtain three sets of defect data:

hose with CK features, those with process features, and those with

etwork features. Next, for each project with each feature set, we

se a 50/50 stratified sampling strategy to generate the training set

nd test set. We then use our LDFR framework to learn the deep

eature representation for the training set and use the same map-

ing rule to extract the deep feature representation for the test set.

ith the mapped training set, we train a classification model and

pply it to the mapped test set. Finally, we report the experimental

esults and use statistical tests to evaluate the effectiveness of our

roposed LDFR framework. 
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Fig. 4. The flow chart of our overall framework. 

Table 1 

Description of the benchmark dataset. 

Project Version # M % D Project Version # M % D 

∗ant 1.3 125 16.00% jedit 3.2 272 33.09% 

1.4 178 22.47% 4.0 306 24.51% 

1.5 293 10.92% 4.1 312 25.32% 

1.6 351 26.21% 4.2 367 13.08% 
∗camel 1.0 339 3.83% 4.3 492 2.24% 

1.2 608 35.53% velocity 1.6 229 34.06% 

1.4 872 16.63% xerces 1.2 440 16.14% 

1.6 965 19.48% 1.3 453 15.23% 

ivy 2.0 352 11.36% Equinox 3.4 324 39.81% 

log4j 1.0 135 25.19% JDT Core 3.4 997 20.66% 

poi 2.0 314 11.78% Lucene 2.4.0 691 9.26% 

synapse 1.0 157 10.19% Mylyn 3.1 1862 13.16% 

1.1 222 27.03% PDE UI 3.4.1 1497 13.96% 

1.2 256 33.59% Average 497 19.66% 
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1 http://depfind.sourceforge.net/ . 
2 http://www.analytictech.com/ucinet/ . 
4. Experiment setup 

4.1. Benchmark dataset 

We evaluate the proposed LDFR framework on the publicly

available software defect data provided by Song et al. (2018) as

a benchmark dataset. This dataset includes 22 project versions

from the PROMISE repository ( Jureczko and Spinellis, 2010 ) and

five projects from the AEEEM dataset ( DAmbros et al., 2012 ) for

a total of 27 project versions. For each project version, the bench-

mark dataset provides three types of module features: CK features,

process features, and network features. Table 1 tabulates the sta-

tistical information of these 27 project versions, where # M and %

D denote the number of total modules and the percentage of de-

fective modules, respectively. 

4.2. Three types of features 

Here, we give brief descriptions of the features and the process

by which they are collected. 

(1) CK features: CK features, also known as object-oriented

design features, are static measurements of the source code.

Many previous studies Ghotra et al. (2015) ; Jing et al. (2017) ;

Chen et al. (2015) ; Xia et al. (2016) have used such features to

investigate the performance of various defect prediction meth-

ods. The intuition here is that the more complicated the mod-

ule, the greater the probability that the module contains defects.

Chidamber and Kemerer (1991, 1994) proposed a suite of six mean-

ingful CK features. They claim that such features can help users un-

derstand the design complexity of the source code, which helps to

detect design flaws. The CK features can be automatically extracted

with an open-source tool, CKJM, developed by Spinellis (2005) . We

use the six features because they are the common ones in both

original PROMISE and AEEEM datasets. 
(2) Process features: Process features, also called change fea-

ures, measure the development change history of the software

rojects. Studies have shown that process features are better

easurements for software defects ( Rahman and Devanbu, 2013;

raves et al., 20 0 0; Moser et al., 20 08 ). For each of the above-

entioned projects, Song et al. (2018) extracted 11 process features

erived from Moser et al. (2008) . 

(3) Network features: Network features are generally used to

uantitatively measure the dependency relationships between the

arious components of a software module. These features can be

xtracted from the dependency graph of each module, in which

he nodes represent the components (such as the methods) in a

lass, and the edges represent the call dependencies between the

omponents. Song et al. (2018) used two open-source tools (i.e.,

ependencyFinder 1 and UCINET 2 ) to extract the network features.

ore specifically, DependencyFinder is first used to extract the call

ependency graph of the components for each module, and the

CINET tool is then applied to calculate the network features from

he graph. Song et al. (2018) extracted 24 features of three types of

etwork measurements, including 12 Ego network measurements,

our structural measurements and eight centrality measurements.

he brief descriptions of the three types of measurements are as

ollows: 

Ego network measurements : Each node (a method in the class

orresponds to a node) has an ego network that contains itself

called ego), its neighbors (called alters), and some specific edges

hat present the call relationships between nodes. These edges

nly include those between the ego and the alters, and those

mong the alters. 

http://depfind.sourceforge.net/
http://www.analytictech.com/ucinet/
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Structural measurements : Burt (2009) proposed four features

rom the structural holes based on the ego network. The features

re calculated for all nodes in the network by taking each in turn

s the ego. 

Centrality measurements : Centrality evaluates the importance

f a node or edge for the connectivity or the information flow of

he network. 

The detailed meanings of the six CK features, 11 process fea-

ures, and 24 network features are available on our online supple-

entary materials 3 . 

.3. Evaluation indicators 

A series of evaluation indicators has been proposed to measure

he performance of various defect prediction methods, such as Ac-

uracy, Recall, Precision, F-measure, and AUC. However, Accuracy

s not an appropriate performance indicator for defect prediction.

or example, given defect data with 90 non-defective modules and

0 defective modules and a SDP method that classifies all modules

s non-defective, in this case, even though the Accuracy (90%) is

igh, this SDP method is meaningless because no defective mod-

les are identified. Precision and Recall are fundamental indicators

n SDP studies ( Fu and Menzies, 2017 ). In general, increasing the

ecall values, however, may result in an oscillating decline in the

recision values. We thus use the harmonic mean of Precision and

ecall, that is, the F-measure, as our performance indicator. Greater

ecall and Precision will lead to a higher F-measure. These indi-

ators have been widely used in previous studies ( Nam and Kim,

015; Jing et al., 2014; Nam et al., 2013 ). Another commonly used

erformance indicator in SDP is the A rea U nder the C urve ( AUC ).

owever, Song et al. (2018) recently noted that AUC is not suit-

ble for defect prediction to determine which specific SDP method

hould be selected. In addition, Vickers and Elkin (2006) verified

hat methods with different AUC values can be comparable and

hat methods with higher AUC values can sometime lead to in-

erior performance. Thus, we do not use AUC as the performance

easurement in this study, however, we make the AUC results of

ur LDFR framework available in our online materials for compari-

on in future studies. Before introducing the Recall and F-measure,

e first describe four typical outputs of a binary classification as

ollows: T rue P ositive ( TP ) denotes the number of defective mod-

les that are correctly predicted; T rue Negative ( TN ) denotes the

umber of predicted non-defective modules that are correctly pre-

icted; F alse P ositive ( FP ) denotes the number of predicted de-

ective modules that are incorrectly predicted; and F alse Negative

 FN ) denotes the number of predicted non-defective modules that

re incorrectly predicted. 

Recall is defined as the ratio of defective modules that are cor-

ectly predicted to the total number of real defective modules, i.e.,

ecall = TP / (TP + FN) . (9)

Precision is defined as the ratio of defective modules that are

orrectly predicted to the total number of defective modules that

re correctly and incorrectly predicted, i.e., 

recision = TP / (TP + FP) . (10)

Then, F-measure is calculated as 

 - measure = 

(1 + θ2 ) × Precision × Recall 

θ2 × Precision + Recall 
, (11) 

here θ is a bias parameter toward Precision and Recall (i.e., to

easure the relative importance of the two terms). In this work,
3 https://sites.google.com/view/jss-ldfr . 

 

h  
e set θ as 2, which highlights Recall because we want to cor-

ectly detect as many real defective modules as possible, which is

onsistent with the definition of Recall. In addition, two types of

isclassification errors are encountered in defect prediction: type I

isclassification occurs when non-defective modules are predicted

s defective ones, and type II misclassification occurs when defec-

ive modules are predicted as non-defective ones. Type I misclassi-

cation leads to a waste in test resources by checking the real non-

efective modules, and type II misclassification is associated with

isk cost by missing the real defective modules ( Jing et al., 2014 ).

he losses generated by type II misclassification are much higher

han the type I misclassification, even though the latter may have

 negative impact on the developers’ trust on the approach. To re-

uce type II misclassification, we must reduce the FN value, which

eads to greater Recall according to its definition. For these reasons,

e follow previous studies ( Jing et al., 2017; Jiang et al., 2008; Li-

aras et al., 2012; Li et al., 2018 ) in using the skewed F-measure

ith parameter θ = 2 . 

However, these three indicators are traditional performance

easurements that do not consider the inspecting effort s required

n the software testing process because they assume that sufficient

ffort s are available to test all modules ( Chen et al., 2015; Zim-

ermann et al., 2009; Turhan et al., 2009 ). To assess SDP perfor-

ance in a more practical scenario in which effort s f or testing are

imited, Mende et al. Mende and Koschke (2010) proposed effort-

ware performance indicators. In this study, we use three effort-

ware indicators to evaluate the performance of our LDFR frame-

ork for SDP. 

In quality assurance activity, the testers always desire

he maximum profit within a certain amount of test effort s

risholm et al. (2010) ; Kamei et al. (2013) ; Yang et al. (2016) .

revious studies used 20% of LOC to define the test effort s in-

olved in inspecting the software modules and treated the ratio of

iscovered defective modules as the profit ( Yang et al., 2015; Xia

t al., 2016; Jiang et al., 2013 ). 

In this study, we refer to the study by Huang et al. (2017) to

alculate the three effort-aware indicators. Fig. 5 depicts the calcu-

ation process. We describe the main steps as follows: 

In step 1, a classification model is learned on the training set to

redict the test set as two groups: the predicted defective group

nd the predicted non-defective group. In step 2, the modules in

he two groups are ranked in ascending order according to their

OC values individually. In step 3, the two ranking results are

erged and the predicted defective group is put in front of the

ther group. In step 4, the cumulative percentage of LOC is calcu-

ated until it reaches 20%. In step 5, some statistics are counted to

alculate the indicators. 

Here, we first define three basic terms: t nd denotes the num-

er of defective modules in the test set; t ′ n denotes the number of

odules that have been checked after inspecting 20% of LOC; and

 

′ 
nd 

denotes the number of real defective modules that have been

iscovered after inspecting 20% of LOC. 

Based on the three statistics, the three effort-aware indicators

re defined as follows 

E ffort- A ware Recall ( EARecall ) is defined as the ratio of the de-

ective modules detected when inspecting 20% LOC to all real de-

ective modules, i.e., 

ARecall = t ′ nd / t nd . (12)

E ffort- A ware Precision ( EAPrecision ) is defined as the ratio of

he real defective modules that have been detected to all modules

hat have been checked when inspecting 20% LOC, that is, 

APrecision = t ′ nd / t 
′ 
n . (13)

Then E ffort- A ware F-measure ( EAF-measure ) is defined as the

armonic mean of EAPrecison and EARecall. Like the traditional F-

https://sites.google.com/view/jss-ldfr
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Fig. 5. The flow chart to calculate the effort-aware indicators. 
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measure, the general form of EAF-measure is formulated as: 

EAF-measure = 

(1 + θ2 
1 ) × EAPrecision × EARecall 

θ2 
1 

× EAPrecision + EARecall 
. (14)

In this study, we also set θ1 as 2 for EAF-measure. In Fig. 5 , the

values of t nd , t 
′ 
n , and t ′ 

nd 
are equal to 3, 4, and 2, respectively. Thus,

EARecall and EAPrecision are equal to 2/3 and 1/2, respectively. 

4.4. Parameter configuration 

To facilitate the reproduction of our experiments in future stud-

ies, we detail the network structure and parameter configuration of

our LDFR framework as follows. 

Our DNN model consists of one input layer, multiple hidden

layers and one output layer. The inputs of DNN are the module

features. The output layer has two nodes that denote the proba-

bility distribution for the module labels. The configuration for the

hidden layers is important because a simple network design can-

not promise enough learning capacity and a complicated network

structure may lead to over-fitting. In this study, we focus mainly on

the network structure design, that is, the number of hidden layers

and the number of hidden nodes in each hidden layer that have a

relatively larger impact on performance. In terms of network pa-

rameters (i.e., the weights and biases), the former are initialized

with the Xavier method ( Glorot and Bengio, 2010 ), which is a pop-

ular initialization technique for weights, and the latter are initial-

ized with 0. In terms of the hyperparameters, we fix the batch size

as 16, and assign the number of iterations to 20,0 0 0, in which we

set the learning rate for the first 50 0 0 iterations as 1e-5 and decay

it to 1e-6 for the other 15,0 0 0 iterations. 

In terms of the number of hidden layers and hidden nodes, we

perform a case study on Project ant with version 1.3 to determine

the two terms with a grid search based on F-measure. More specif-

ically, we divide the data into two equal parts with a stratified

sampling strategy and treat one part as the test set. We divide the

other part again into two equal parts with a stratified sampling

strategy and treat them as the training set and the validation set.

We set the number of hidden layers with five options {1, 2, 3, 4,

5} and the number of hidden nodes with six options {5, 10, 15, 20,

25, 30}. We then use the grid search on the two sets of options

to select the optimum options. We conduct 30 (5 ∗6) experiments

and found that the network structure with two hidden layers and

10 hidden nodes achieve the best overall performance. Considering

that (1) the more hidden layers and hidden nodes, the greater the

complexity of the model and the slower the model training; that

(2) seeking the optimum parameters with a grid search for each

defect data on each data partition is time-consuming; and that (3)

the model with different parameters for distinct defect data shows

no good generalization ability, in this study, we fix the neural net-

work with two hidden layers and 10 hidden nodes for all defect

data. Thus, we simply divide our defect data into two equal parts

as the training set and test set, respectively, without a validation

set for parameter-tuning in our experiments. 

In terms of the weight in the weighted cross-entropy loss,

we set the weight of classifying a real defective module as non-

defective as double that of classifying a real non-defective mod-
le as defective. The source code is publicly available in our online

upplementary materials. 

.5. Dataset partition 

In our experiment, we use a 50/50 split with the stratified sam-

ling strategy to divide the original data into training and test

ets. More specifically, we randomly sample half of the defective

nd non-defective modules as the training set and use the re-

aining half of the modules as the test set. This process ensures

hat the number of defective and non-defective modules in the

wo sets are the same and helps to reduce sampling biases by

voiding sampling of a set with only non-defective modules. This

ampling strategy is commonly adopted in previous SDP settings

 Wang et al., 2016b; Jing et al., 2014; Hryszko et al., 2017; Ryu

t al., 2016 ). To reduce the effects of random division on the ex-

erimental results, we repeat the sampling process 30 times and

eport the average value for each indicator. 

.6. Basic classifier 

In this study, we select the random forest as our basic classifier

hich is widely-used in previous studies ( Yang et al., 2017; Tan-

ithamthavorn et al., 2018a; 2018b ). In the model building phase,

andom forest constructs multiple decision trees with sampled

odule subsets from the training set. In the model application

hase, random forest feeds the new module into the constructed

ecision trees and the module label is determined by the majority

oting of the outputs of these decision trees. In our study, the final

utput of the last hidden layer is used as the input to the random

orest classifier because this layer outputs the learned feature rep-

esentation. 

.7. Statistical test 

To carry out a statistical comparison of the differences in per-

ormance among our method (LDFR) and the compared baseline

ethods, we follow previous studies ( Zhang et al., 2016; Tan-

ithamthavorn et al., 2017; Xu et al., 2016; Ghotra et al., 2015;

i et al., 2017b ) in using a state-of-the-art statistical test called

he Scott-Knott test. Unlike several commonly used post hoc test

ethods (such as Nemenyi’s test ( Demšar, 2006 )) that have a con-

ounding issue by partitioning multiple methods into overlapping

roups ( Ghotra et al., 2015 ), the Scott-Knott test exploits a hier-

rchical clustering algorithm to partition the methods into signifi-

antly different groups (significance level α = 0 . 05 ). The methods

ithin the same group have no significant differences, whereas

he methods across groups include significant differences. In this

tudy, we use a variant of the Scott-Knott test called Scott-Knott

 ffect S ize D ifference ( Scott-Knott ESD ) ( Tantithamthavorn et al.,

017 ) for significance analysis. The Scott-Knott ESD corrects the

on-normal distribution of the test inputs and merges the groups

hat have statistical differences with a negligible effect size into

ne group. In this study, we conduct a two-round Scott-Knott ESD:

n the first round, the Scott-Knott ESD is applied to each project

ith the inputs of 30 indicator values of each method. As each
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Fig. 6. Radar charts of average indicator values for LDFR and its four variants under 

defect data with CK metrics. 
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ethod receives a ranking on each project, we can obtain 27 rank-

ngs for each method after this round; in the second round, the

cott-Knott ESD is applied to all methods with the inputs of the

7 rankings and then outputs the overall ranking for each method

nd the corresponding group. The method with lower ranking per-

orms better. 

.8. Experimental environment 

We conduct the experiments on our server, which is equipped

ith a 16-core Intel Xeon E5-2620@2.1GHz CPU, 16RAM, 512GB

SD, and two 1080Ti GPUs. We implement the DNN using Pytorch

.3.0 under Ubuntu 18.04.1 LTS. 

. Evaluation result 

Learning discriminative feature representation that can easily

istinguish the two classes indicates that most of modules in both

lasses will be correctly predicted. From this perspective, feature

epresentation learning is also helpful to address the class im-

alance issue. Thus, in this study, we mainly investigate whether

ur LDFR framework works better than other imbalance learning

ethods for SDP. We empirically design the following two research

uestions. 

.1. RQ1: How effective is our combined loss function compared with 

ts downgraded loss functions? 

Motivation : As described in Section 3.4 , our LDFR framework

ses a novel hybrid loss function that consists of a triplet loss

nd a weighted cross-entropy loss for DNN training to learn the

eep feature representation of the defect data. This question is pro-

osed to investigate whether this kind of combined loss function

an more effectively achieve better SDP performance than some of

ts variant loss functions. 

Method : To answer this question, we design three baseline

ethods with different downgraded loss functions to learn the fea-

ure representation for the defect data. In addition, we also use

he method without feature representation learning as the most

asic method for comparison. The four baseline methods are de-

cribed as follows. NONE method means that we use only the ran-

om forest classifier without any feature learning process to con-

uct SDP on the original defect data. We treat this method as a

pecial variant of LDFR. CE method uses the original C ross- E ntropy

oss (i.e., the unweighted version) to train the DNN for feature

epresentation learning. WCE method applies the W eighted C ross-

 ntropy loss to train the DNN for feature representation learning.

ET method combines the unweighted C ross- E ntropy loss with the

 riplet loss function to train the DNN for feature representation

earning. 

Because each project studied consists of CK metrics, process

etrics, and network metrics, for each research question, we an-

lyze the experimental results on defect data with each type of

etric individually for each research question. 

Results : 

.1.1. The results of LDFR and its four variants on defect data with CK

etrics 

Fig. 6 depicts the radar chart of average values of the six indi-

ators for our LDFR framework and its four variants under defect

ata with CK metrics. The radar chart is a graphical representa-

ion used to display multivariate data (i.e., the average indicator

alues in this study) in a two-dimensional chart in which the vari-

bles represented on the axes begin from the same center point

ith a value of 0. The value of each variable is depicted by the

ode on the axis. A line is drawn connecting the nodes to form
 polygon corresponding to a method with a specific color. The

adar chart easily shows all average indicator values for multiple

ethods at once. The detailed results for the methods are available

n our online supplementary materials. From this figure, it can be

een that LDFR achieves the best average values in terms of five

ndicators (all except Precision) across the 27 defect data, whereas

he average Precision by LDFR is only inferior to that by the NONE

ethod. Compared with the best average indicator values among

he four baseline methods, LDFR achieves average improvements

f 7.6%, 13.5%, 15.3%, 7.1%, and 11.6% in terms of Recall, F-measure,

APrecision, EARecall, and EAF-measure, respectively. 

Fig. 7 visualizes the corresponding results of the Scott-Knott

SD for each indicator. The methods that have significant differ-

nces are drawn in different colors. The figure shows that LDFR

anks first and performs significantly better than all baseline meth-

ds in terms of five indicators (all except Precision) and ranks sec-

nd and performs significantly better than three baseline methods

all except the NONE method) in terms of Precision. 

.1.2. The results of LDFR and its four variants on defect data with 

rocess metrics 

Fig. 8 depicts the results of radar chart for these five meth-

ds under defect data with process metrics. From this figure, it

an be seen that LDFR obtains the best average values in terms

f five indicators (all except Precision), whereas the average Preci-

ion by LDFR is only worse than that by the NONE method. Com-

ared with the best average indicator values among the four base-

ine methods, LDFR achieves average improvements of 5.1%, 11.5%,

6.0%, 9.8%, and 12.6% in terms of Recall, F-measure, EAPrecision,

ARecall, and EAF-measure, respectively. 

Fig. 9 visualizes the corresponding statistical test results for

ach indicator. Fig. 9 shows that LDFR ranks first and has signif-

cant differences in performance toward all baseline methods in

erms of five indicators (all except Precision), whereas ranks sec-

nd and has significant differences in performance toward three

aseline methods (all except the NONE method) in terms of Preci-

ion. 

.1.3. The results of LDFR and its four variants on defect data with 

etwork metrics 

Fig. 10 depicts the results of radar chart for these five meth-

ds under defect data with network metrics. From this figure, it

an be seen that LDFR obtains the best average values in terms

f five indicators (all except Precision), whereas the average Preci-

ion by LDFR is only lower than that by the NONE method. Com-

ared with the best average indicator values among the four base-

ine methods, LDFR achieves average improvements of 6.4%, 10.1%,

4.7%, 7.9%, and 11.8% in terms of Recall, F-measure, EAPrecision,

ARecall, and EAF-measure, respectively. 
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Fig. 7. Scott-Knott ESD test for LDFR and its four variants on defect data with CK metrics. (a) Precision. (b) Recall. (c) F-measure. (d) EAPrecision. (e) EARecall. (f) EAF- 

measure. 

Fig. 8. Radar charts of average indicator values for LDFR and its four variants under 

defect data with process metrics. 
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Fig. 11 visualizes the corresponding statistical test results for

each indicator. Fig. 11 shows that LDFR ranks first and is signifi-

cantly superior to all baseline methods in terms of five indicators

(all except Precision), whereas ranks second and is significantly su-

perior to three baseline methods (all except the NONE method) in

terms of Precision. 

Analysis : From the above observations, it can be seen that

our method, LDFR, combining the triplet loss and weight cross-

entropy loss is superior to the variant methods overall under de-
Fig. 9. Scott-Knott ESD test for LDFR and its four variants on defect data with process

EAF-measure. 
ect data with three types of metrics (all except the NONE method)

n terms of Precision. Compared against the NONE method with

ower Recall and higher Precision, LDFR with higher Recall and

ower Precision means that more real defective modules are cor-

ectly identified, whereas more real non-defective are incorrectly

dentified. The reason is that LDFR that considers the class imbal-

nce of the data is biased to the identification of minority class

odules, which leads to a certain number of real non-defective

odules being incorrectly identified, whereas the NONE method

oes not consider class imbalance, thus less majority class mod-

les and more minority class modules will be incorrectly identi-

ed, which causes higher Precision but lower Recall. Among CE,

ET, and WCE, the three groups of results show that CET is supe-

ior to other two methods overall in most cases. The reason why

ur method, LDFR, is superior to CET is that LDFR uses a weighted

ross-entropy loss to further make the learned features bias to

dentifying minority class modules. The reason why LDFR outper-

orms WCE is that LDFR further improves the representation ability

f the features by using a metric learning technique. It also im-

lies the necessity of using the hybrid loss function. The fact that

ET is superior to CE also implies that the feature learning process

an further promote the performance improvement. In addition,

he fact that CET is superior to WCE implies that the introduction

f the feature representation is more effective than the weighting

scheme. 

In summary, LDFR shows the superiority on defect predic-

ion performance compared with its downgraded version in terms
 metrics. (a) Precision. (b) Recall. (c) F-measure. (d) EAPrecision. (e) EARecall. (f) 
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Fig. 10. Radar charts of average indicator values for LDFR and its four variants un- 

der defect data with network metrics. 
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tical models and BalC in terms of EAPrecision. 

F

E

f five indicators (all except Precision), whereas the most basic

ethod, NONE, performs the best only in terms of Precision on

hree types of defect data. 

.2. RQ2: Is our framework LDFR more effective than exiting 

mbalanced learning methods for SDP? 

Motivation : There are various method families for imbalanced

ata, such as sampling-based, ensemble-based, and cost-sensitive-

ased methods. This question is designed to explore whether

ur LDFR framework is better than previous imbalanced learning

ethods in improving the prediction performance on the imbal-

nced defect data. 

Method : To answer this question, we select six sampling-based,

ix ensemble-based, two statistical models, nine cost-sensitive-

ased methods. The sampling-based methods include R andom

 nder- S ampling ( RUS ), R andom O ver- S ampling ( ROS ), S ynthetic

 inority O versampling TE chnique ( SMOTE ) ( Chawla et al., 2002 ),

DA ptive SYN thetic ( ADASYN ) sampling ( He et al., 2008 ),

MO with E dited N earest N eighbors ( SMOENN ) ( Batista et al.,

004 ), and SMO with T omek L inks ( SMOTL ) ( Batista et al.,

004 ). The ensemble-based methods consist of Bag ging ( Bag ),

 alanced Bag ging ( BBag ), AdaB oost ( AdaB ), RUS with Ada B oost

 RUSB ), EasyE nsemble ( EasyE ), Bal ance C ascade ( BalC ). The two

tatistical models are P artial L east S quares C lassifier ( PLSC ) and

 symmetric PL SC ( APL SC ). The nine cost-sensitive-based meth-

ds are derived from the combinations of three different decision

orest methods (i.e., a S ystematically developed F orest of multi-

le decision trees ( SF ) ( Islam and Giggins, 2011 ), C ost- S ensitive
ig. 11. Scott-Knott ESD test for LDFR and its four variants on defect data with networ

AF-measure. 
ecision F orest ( CSF ) ( Siers and Islam, 2015 ), and B alanced CSF

 BCSF ) ( Siers and Islam, 2015 )) and three different voting strategies

i.e., C ascading-and-sharing based V oting ( CV )( Li and Liu, 2003 ),

 aximally diversified multiple decision tree based V oting ( MV )

 Hu et al., 2006 ), and C ost- S ensitive V oting ( CSV ) ( Siers and Is-

am, 2015 )). Combining each decision forest method with a vot-

ng strategy, we obtain nine total baseline methods, that is, SFCV,

FMV, SFCSV, CSFCV, CSFMV, CSFCSV, BCSFCV, BCSFMV, and BCS-

CSV. The source code of the nine methods was provided by

iers and Islam (2015) . 

Results : 

.2.1. The results of LDFR and 23 imbalanced learning methods on 

efect data with CK metrics 

Fig. 12 depicts the results of radar chart for LDFR and 23 base-

ine methods under defect data with CK metrics. To observe the av-

rage values more clearly, we use three radar charts to present the

esults. From Fig. 12 (a), compared with six sampling-based meth-

ds, LDFR gets the best average values in terms of 5 indicators (all

xcept Precision), whereas the average Precision by LDFR is lower

han that by other methods. Compared with the best average indi-

ator values among the six methods, LDFR achieves average im-

rovements of 48.3%, 14.7%, 45.2%, 17.7%, and 31.5% in terms of

ecall, F-measure, EAPrecision, EARecall, and EAF-measure, respec-

ively. From Fig. 12 (b), compared with six ensemble-based meth-

ds and two statistic models, LDFR gets the best average values in

erms of F-measure, EARecall, and EAF-measure, whereas the aver-

ge Precision, Recall, and EAPrecision by LDFR are lower than that

y seven, one, and three baseline methods, respectively. Compared

ith the best average indicator values among the eight methods,

DFR achieves average improvements of 5.5%, 17.4%, and 23.2% in

erms of F-measure, EARecall, and EAF-measure, respectively. From

ig. 12 (c), compared with 9 cost-sensitive-based methods, LDFR

ets the best average values in terms of five indicators (all ex-

ept Precision), whereas the average Precision by LDFR is lower

han that by other methods. Compared with the best average in-

icator values among the nine methods, LDFR achieves average

mprovements of 59.5%, 15.6%, 46.4%, 16.5%, and 31.5% in terms

f Recall, F-measure, EAPrecision, EARecall, and EAF-measure,

espectively. 

Fig. 13 visualizes the corresponding statistical test results for

ach indicator. Fig. 13 shows that LDFR ranks first in terms of Re-

all, F-measure, EARecall, and EAF-measure and is significantly su-

erior to all baseline methods (all except BalC in terms of Recall),

hereas ranks third and is not significantly superior to two statis-
k metrics. (a) Precision. (b) Recall. (c) F-measure. (d) EAPrecision. (e) EARecall. (f) 
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Fig. 12. Radar charts of the six average indicator values across 27 project versions with CK features. (a) LDFR and six sampling-based methods. (b) LDFR, six ensemble-based 

methods and two statistical models.(c) LDFR and nine cost-sensitive based methods. 

Fig. 13. Scott-Knott ESD test for LDFR and 23 imbalanced learning methods on defect data with CK metrics. (a) Precision. (b) Recall. (c) F-measure. (d) EAPrecision. (e) 

EARecall. (f) EAF-measure. 
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5.2.2. The results of LDFR and 23 imbalanced learning methods on 

defect data with process metrics 

Fig. 14 depicts the results of radar chart for these 24 baseline

methods under defect data with process metrics. From Fig. 14 (a),

compared with six sampling-based methods, LDFR obtains the best

average values in terms of five indicators (all except Precision),

whereas the average Precision by LDFR is inferior to that by other

methods. Compared with the best average indicator values among

the six methods, LDFR achieves average improvements of 40.4%,

18.6%, 81.6%, 29.8%, and 50.0% in terms of Recall, F-measure, EA-

Precision, EARecall, and EAF-measure, respectively. From Fig. 14 (b),
ompared with 6 ensemble-based methods and two statistic mod-

ls, LDFR obtains the best average values in terms of F-measure,

ARecall, and EAF-measure, whereas the average Precision, Recall,

nd EAPrecision by LDFR are lower than that by six, one, and three

aseline methods, respectively. Compared with the best average in-

icator values among the eight methods, LDFR achieves average

mprovements of 13.2%, 29.8%, and 22.4% in terms of F-measure,

ARecall, and EAF-measure, respectively. From Fig. 14 (c), compared

ith 9 cost-sensitive-based methods, LDFR obtains the best aver-

ge values in terms of five indicators (all except Precision), whereas

he average Precision by LDFR is lower than that by other methods.
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Fig. 14. Radar charts of the 6 average indicator values across 27 project versions with process features. (a) LDFR and six sampling-based methods. (b) LDFR, six ensemble- 

based methods and two statistical models.(c) LDFR and nine cost-sensitive-based methods. 

Fig. 15. Scott-Knott ESD test for LDFR and 23 imbalanced learning methods on defect data with process metrics. (a) Precision. (b) Recall. (c) F-measure. (d) EAPrecision. (e) 

EARecall. (f) EAF-measure. 

C  

m  

8  

E

 

e  

c  

c  

o  

t

5

d

 

m  

c  

b  

s  

b  

u  

m  
ompared with the best average indicator values among the nine

ethods, LDFR achieves average improvements of 40.4%, 20.2%,

0.2%, 29.5%, and 48.9% in terms of Recall, F-measure, EAPrecision,

ARecall, and EAF-measure, respectively. 

Fig. 15 visualizes the corresponding statistical test results for

ach indicator. Fig. 15 shows that LDFR ranks first in terms of Re-

all, F-measure, EARecall, and EAF-measure, and performs signifi-

antly better than all baseline methods (all except BalC in terms

f Recall), whereas ranks third and is not significantly superior to

wo statistical models and BalC in terms of EAPrecision. 
.2.3. The results of LDFR and 23 imbalanced learning methods on 

efect data with network metrics 

Fig. 16 depicts the results of radar chart for these 24 baseline

ethods under defect data with network metrics. From Fig. 16 (a),

ompared with six sampling-based methods, LDFR obtains the

est average values in terms of five indicators (all except Preci-

ion), whereas the average Precision by LDFR is inferior to that

y other methods. Compared with the best average indicator val-

es among the six methods, LDFR achieves average improve-

ents of 33.3%, 13.7%, 78.6%, 27.7%, and 49.1% in terms of Re-
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Fig. 16. Radar charts of the 6 average indicator values across 27 project versions with network features. (a) LDFR and six sampling-based methods. (b) LDFR, six ensemble- 

based methods and two statistical models.(c) LDFR and nine cost-sensitive-based methods. 

Fig. 17. Scott-Knott ESD test for LDFR and 23 imbalanced learning methods on defect data with network metrics. (a) Precision. (b) Recall. (c) F-measure. (d) EAPrecision. (e) 

EARecall. (f) EAF-measure. 
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call, F-measure, EAPrecision, EARecall, and EAF-measure, respec-

tively. From Fig. 16 (b), compared with six ensemble-based methods

and two statistical models, LDFR obtains the best average values in

terms of F-measure, EARecall, and EAF-measure, whereas the aver-

age Precision, Recall, and EAPrecision by LDFR are lower than that

by six, one, and three baseline methods, respectively. Compared

with the best average indicator values among the eight methods,

LDFR achieves average improvements of 7.0%, 27.4%, and 12.4% in

terms of F-measure, EARecall, and EAF-measure, respectively. From

Fig. 16 (c), compared with nine cost-sensitive-based methods, LDFR
btains the best average values in terms of five indicators (all ex-

ept Precision), whereas the average Precision by LDFR is lower

han that by other methods. Compared with the best average indi-

ator values among the nine methods, LDFR achieves average im-

rovements of 48.1%, 18.9%, 77.2%, 25.3%, and 46.9% in terms of

ecall, F-measure, EAPrecision, EARecall, and EAF-measure, respec-

ively. 

Fig. 17 visualizes the corresponding statistical test results for

ach indicator. Fig. 17 shows that LDFR ranks first in terms of

ecall, EARecall, and EAF-measure and performs significantly bet-
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Table 2 

The Parameter Settings of the 6 Basic Classifiers. 

Classifier Parameter settings 

RF Number of trees in the forest: 10 

NB Distribution Type: kernel density estimation 

LR Norm used in the penalization: l 2 penalties 

DT Minimum module number splitting an internal node: 2 

NN Number of neighbors to query: 8 

SVM Penalty parameter of the error term: 1; kernel type: rbf 
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er than all baseline methods (all except BalC in terms of Recall),

hereas ranks fourth in terms of F-measure and EAPrecision. 

Analysis : From the above observations, it can be seen that our

ethod LDFR performs better than the 23 baseline methods over-

ll under defect data with three types of metrics except in terms of

recision. Unlike the sampling-based methods that change the data

istribution of the original data to re-balance the module num-

ers of two classes, LDFR uses a weighted loss function to make

he identification bias to the minority class modules and maintains

he original data distribution. Unlike the ensemble-based methods

hat rely on a set of classification decisions with multiple itera-

ions, LDFR focuses on learning new feature representation with

owerful discriminant ability for the classification model. Com-

ared with the nine cost-sensitive-based methods that are mainly

ased on the original feature set, LDFR has an additional fea-

ure refining process by the metric learning technique. In addition,

mong the six sampling-based methods, they achieve similar av-

rage performance in terms of three effort-aware indicators, and

US and SMOENN achieve better Recall and F-measure than the

thers on three types of defect data. Among the six ensemble-

ased methods and two statistical models, they also obtain simi-

ar average performance in terms of three effort-aware indicators

or most methods, whereas five new imbalanced learning methods

i.e., BBag, EasyE, BalC, PLSC, and APLSC) get better Recall and F-

easure than the traditional methods (like Bag and AdaB) on three

ypes of defect data. Among the nine cost-sensitive-based methods,

hey also get similar average performance in terms of three effort-

ware indicators, whereas the three different decision forest meth-

ds with the cost-sensitive voting scheme perform better than

hose with other two schemes. This implies that the cost-sensitive

oting scheme is more effective to improve the defect prediction

erformance. 
ig. 18. Scott-Knott ESD test for LDFR with different classifiers on defect data with CK  

AF-measure. 

ig. 19. Scott-Knott ESD test for LDFR with different classifiers on defect data with proce  

AF-measure. 
 metrics. (a) Precision. (b) Recall. (c) F-measure. (d) EAPrecision. (e) EARecall. (f)

ss metrics. (a) Precision. (b) Recall. (c) F-measure. (d) EAPrecision. (e) EARecall. (f)

Overall, LDFR outperforms nearly all baseline methods in terms

f three effort-aware indicators, and is superior to most baseline

ethods in terms of Recall and F-measure, but is inferior to most

aseline methods in terms of Precision on three types of defect

ata. 

. Discussion 

.1. Performance on various classifiers 

We use the random forest classifier as our basic prediction

odel. In this subsection, we discuss the effects of various clas-

ifiers on the performance of our LDFR framework for SDP. For

his purpose, we choose five more commonly used machine

earning classifiers for comparison: N aive B ayesian ( NB ), L ogistic

 egression( LR ), D ecision T ree ( DT ), N earest N eighbour ( NN ), and

 upport V ector M achine ( SVM ). Table 2 lists the parameter setting

f the 6 basic classifiers. 

Figs. 18 –20 visualize the corresponding statistical test results

or each indicator under defect data with CK metrics, process met-

ics, and network metrics, respectively. Note that the method term
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Fig. 20. Scott-Knott ESD test for LDFR with different classifiers on defect data with network metrics. (a) Precision. (b) Recall. (c) F-measure. (d) EAPrecision. (e) EARecall. (f) 

EAF-measure. 

Fig. 21. Radar charts of average indicator values for LDFR under defect data with 3 

types of metrics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

7

 

t  

c  

w  

T  

o  

i  

o  

o  

p  

C

7

 

c  

t  

p  

m  

a  

c  

s  

m  

o  

p  

s  

d  

a  

r

7

 

a  

t  

e  

a  

t  

p

7

 

p  
‘LDRF_NB’ in the figures denotes that the NB classifier is used

as the basic classifier for our LDFR method. From Fig. 18 , it can

be seen that on defect data with CK metrics, LDFR_RF ranks first

in terms of Precision, F-measure, EAPrecision, EARecall, and EAF-

measure; performs significantly better than all baseline methods

(all except LDFR_DT and LDFR_NB in terms of EARecall); and ranks

fourth in terms of Recall. From Fig. 19 , it can be seen that on de-

fect data with process metrics, LDFR_RF ranks first in terms of 5

indicators (all except Recall); performs significantly better than all

baseline methods (all except LDFR_DT in terms of EARecall); and

ranks third in terms of Recall. From Fig. 20 , it can be seen that on

defect data with network metrics, LDFR_RF ranks first in terms of

5 indicators (all except Recall); performs significantly better than

all baseline methods; and ranks third in terms of Recall. 

Overall, LDFR_RF achieves better average indicator values than

the other five methods (all except Recall). Thus, the random forest

classifier is an ideal choice for our feature representation learning

method LDFR. 

6.2. Performance on different types of metrics 

Fig. 21 depicts the radar chart of average values of the six indi-

cators for our LDFR framework under defect data with three types

of metrics. Fig. 21 shows that the performance on defect data with

process metrics and network are very similar in terms of six in-

dicators and they are higher than the performance on defect data

with CK metrics in terms of five indicators (all except Recall). This

implies that LDFR tends to achieve better Recall values on defect

data with CK metrics and obtains better other five indicator values

on defect data with process and network metrics. 
. Threats to validity 

.1. External validity 

The threats to external validity focus on the generalization of

he experimental results. To mitigate these external threats, we

hoose a publicly available open-source benchmark dataset that

as provided in a top journal in the software engineering domain.

his dataset contains 27 software project versions, and three types

f metrics were collected for each project. Thus, conducting exper-

ments on such a large dataset reinforces the representativeness

f our conclusions. However, the projects studied were all devel-

ped with the Java language. Thus, replication experiments on the

rojects developed with other programming languages, such as C,

++, and Python, may prove fruitful. 

.2. Internal validity 

The threats to internal validity concern the faults that may oc-

ur in the implementation of the studied methods. To minimize

he internal validity, we implement our LDFR framework by pair

rogramming in an attempt to avoid the mistakes in program-

ing. For the baseline methods, we make full use of the methods

vailable in the third-party libraries of the Python and the source

odes provided in previous studies. Future studies should explore

tate-of-the-art imbalanced learning methods. However, the imple-

entations of such specialized methods are seldom available and

ur implemented versions may include differences and errors com-

ared with the original ones. Hence, we choose to compare against

ome off-the-shelf imbalanced learning methods. For the effects of

ividing data into training and test sets, we use stratified sampling

nd repeat the process 30 times to reduce the variability of the

andom division. This is a commonly used setting for SDP studies. 

.3. Construct validity 

The threats to construct validity concern the bias of the evalu-

tion indicators used. In this study, we choose widely used tradi-

ional indicators and effort-aware indicators to show the empirical

valuation of our LDFR framework for SDP. Other indicators, such

s g-mean, Balance, and AUC are not used, but we have reported

heir detailed results with our LDFR framework in the online sup-

lementary materials for future studies to compare. 

.4. Reliability validity 

The threats to reliability validity concern the possibility of re-

eating of our proposed framework. To enable further replication
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nd comparison with results from future studies, we have made

he used benchmark dataset and source code available in our on-

ine supplementary materials. 

. Related work 

Software defect data have the natural class imbalance trait,

hich means that the data comprise only a small number of de-

ective modules (i.e., minority class) and the non-defective mod-

les (i.e., majority class) account for the majority. As the class im-

alance issue can prevent defect prediction methods from achiev-

ng satisfactory performance, researchers have proposed various

mbalanced learning methods to mitigate such negative effects.

he existing methods can be divided into three main categories:

ampling-based, ensemble learning-based, and cost-sensitive-based 

mbalanced learning methods. 

.1. Sampling-based methods for SDP 

For sampling-based imbalanced learning methods, three

chemes can be used to mitigate the imbalance issue. The first is

o decrease the non-defective modules, the second is to increase

he defective modules with redundant or synthetic ones, and

he third is to simultaneously increase the defective modules

nd decrease the non-defective modules until an approximately

dentical proportion status is reached. Kamei et al. (2007) studied

he effects of four sampling methods on the performance of four

lassifiers. They chose two industry legacy software systems as

 benchmark dataset. Their results showed that these sampling

ethods can promote the performance of linear and logistic

odels, but not neural network and classification tree models.

ennin et al. (2016) investigated the effects of four sampling

ethods on the performance of effort-aware based SDP models.

hey used 10 classification models and performed experiments

n 10 software projects. Their results showed that these sam-

ling techniques could improve the performance of all prediction

odels when the percentage of fault-prone modules lies in

0% ∼ 30%. In addition, the results indicated that the proportions

f defective and non-defective modules in the test set have a

ignificant impact on the performance of effort-aware based

odels. Bennin et al. (2017b) explored the effects of six sampling

ethods on the performance of five classification models. The

xperimental results on 10 projects showed that these sampling

ethods had statistical and practical effects in terms of false

ositive, Recall, and G-mean, but not in terms of AUC. To generate

ew minority class modules that could contribute to the diversity

f the defect data distribution, Bennin et al. (2018) introduced a

ovel over-sampling method MAHAKIL based on the chromosomal

heory of inheritance. This method used the Mahalanobis distance

o partition the minority class modules into two groups as the

arents and generate synthetic modules that inherit the parents’

iverse peculiarity. Their experimental results manifested the

uperiority of MAHAKIL over some classical sampling methods.

ennin et al. (2017a) examined the effects of a configurable pa-

ameter (i.e, the percentage of defective modules) in the sampling

ethods on the performance of SDP. They studied seven sam-

ling methods with five classifiers on 10 projects. Their results

llustrated that the configurable parameter had a great impact on

he performance of these classifiers in terms of the used indica-

ors (except for AUC). Tantithamthavorn et al. (2018a) assessed

he effects of four sampling techniques on the performance and

nterpretation of seven classifiers. They performed a large-scale

mpirical experiment on four benchmark datasets using 10 per-

ormance indicators. Their results indicated that these sampling

ethods increased the completeness of Recall, but had little effect

n AUC. 
Sampling-based methods are limited in their ability to change

he data distribution of the original data. In addition, such methods

re averse to understanding the interpretation of the SDP models

s described in Tantithamthavorn et al. (2018a) . Unlike sampling-

ased methods, our LDFR framework does not change the module

umber; it just embeds the initial features into a more discrim-

nable space. 

.2. Ensemble-based methods for SDP 

Ensemble based imbalanced learning methods combine mul-

iple weak classifiers into a new one to enhance the overall

erformance on SDP Valentini and Masulli (2002) . Wang and

ao (2013) investigated how class imbalance learning methods en-

ance defect prediction performance. They compared sampling-

ased, threshold moving-based, and ensemble learning-based

ethods and found that a variant of AdaBoost achieved the best

verall performance. Sun et al. (2012) proposed a coding-based

nsemble learning method by transforming the imbalanced bi-

ary class data into multiple-class data and then used a spe-

ial coding strategy to build a prediction model. Laradji et al.

aradji et al. (2015) proposed a two-variant ensemble learning

ethod with or without feature selection methods to alleviate the

lass imbalance of the defect data. Petri ́c et al. (2016) built an en-

emble model by first using a weighted accuracy diversity tech-

ique to exploit the diversity of four classifiers and then combining

hese classifiers with a stacking ensemble technique. Experiments

n eight projects illustrated that their method can achieve better

erformance. 

Unlike ensemble-based methods that usually iteratively sample

ultiple module subsets to enhance the classifier performance, our

DFR framework aims to learn discriminative features to enhance

he classifier performance. 

.3. Cost-sensitive-based methods for SDP 

The cost-sensitive-based methods increase the penalties when

he minority class modules are classified as majority class mod-

les. It is thus conducive to amend the bias in which classifiers

refer to predict the modules as the majority class on imbal-

nced defect data. To the best of our knowledge, Khoshgoftaar

t al. (1999, 2002) were the first to introduce cost-sensitive im-

alance learning into SDP and to build a prediction model with a

oost method. Zheng (2010) proposed three cost-sensitive boost-

ng neural networks methods for SDP. Their experimental results

ndicated that the threshold-moving-based method achieved bet-

er performance, especially on object-oriented software projects.

iu et al. (2014) proposed a two-stage cost-sensitive learning

ethod for SDP by considering the cost information during

oth the classification and feature selection stages. Siers and Is-

am (2015) proposed a combined of decision tree-based cost-

ensitive method and a cost-sensitive voting method for SDP. Both

ethods aimed to minimize the classification cost. Their experi-

ents with six projects of the NASA dataset showed clear improve-

ents compared with six baseline methods. Yang et al. (2017) pro-

osed a two-layer ensemble learning method for just-in-time de-

ect prediction. In the inner layer, decision tree and bagging were

ombined to construct a random forest model. In the outer layer,

 random under-sampling technique was used to train various ran-

om forest models, and a stacking technique was used to assemble

hese models. 

In addition to assigning the weights to various misclassification

ases like general cost-sensitive-based methods, our LDFR frame-

ork integrates the metric learning process into cost-sensitive

earning. 
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9. Conclusions 

To address the challenges of learning capable features and al-

leviating the class imbalance issue in SDP studies, we propose a

novel defect prediction framework, LDFR, by using a hybrid loss

function to train a DNN to learn top-level feature representation.

The hybrid loss function consists of a triplet loss and a weighted

cross-entropy loss. The former loss can preserve locality by shrink-

ing the distances among modules with the same label and can

learn diacritical feature representation by enlarging the distances

between the modules with different labels. The latter loss assigns

more penalties when real defective modules are predicted as non-

defective ones, which is helpful in reducing the negative impact of

class imbalance. We evaluate the performance of our LDFR frame-

work on 27 project version data (each with three types of features)

with both traditional and effort-aware indicators. The experimental

results show that compared with 27 baseline methods, LDFR usu-

ally performs significantly better in terms of five indicators. 

In the future, we will adapt our deep feature representa-

tion learning framework to cross-project defect prediction by

combining transfer learning techniques. In addition, we plan

to incorporate more information in our model in an at-

tempt to understand the potential reasons for defective software

modules. 
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