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Abstract—The self-expressive property of data points, that is,
each data point can be linearly represented by the other data
points in the same subspace, has proven effective in leading
subspace clustering (SC) methods. Most self-expressive methods
usually construct a feasible affinity matrix from a coefficient
matrix, obtained by solving an optimization problem. However,
the negative entries in the coefficient matrix are forced to be
positive when constructing the affinity matrix via exponenti-
ation, absolute symmetrization, or squaring operations. This
consequently damages the inherent correlations among the data.
Besides, the affine constraint used in these methods is not
flexible enough for practical applications. To overcome these
problems, in this article, we introduce a scaled simplex represen-
tation (SSR) for the SC problem. Specifically, the non-negative
constraint is used to make the coefficient matrix physically mean-
ingful, and the coefficient vector is constrained to be summed
up to a scalar s < 1 to make it more discriminative. The
proposed SSR-based SC (SSRSC) model is reformulated as a
linear equality-constrained problem, which is solved efficiently
under the alternating direction method of multipliers frame-
work. Experiments on benchmark datasets demonstrate that the
proposed SSRSC algorithm is very efficient and outperforms the
state-of-the-art SC methods on accuracy. The code can be found
at https://github.com/csjunxu/SSRSC.

Index Terms—Scaled simplex representation (SSR), self-
expressiveness, subspace clustering (SC).
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I. INTRODUCTION

IMAGE-PROCESSING problems often contain high-
dimensional data, whose structure typically lie in a union

of low-dimensional subspaces [1]. Recovering these low-
dimensional subspaces from the high-dimensional data can
reduce the computational and memory cost of the subsequent
algorithms. To this end, many image-processing tasks require
to clustering high-dimensional data in a way that each cluster
can be fitted by a low-dimensional subspace. This problem is
known as subspace clustering (SC) [1].

SC has been extensively studied over the past few
decades [2]–[47]. Most existing SC methods fall into
four categories: 1) iterative methods [2], [3]; 2) algebraic
methods [4], [5], [14]; 3) statistical methods [6]–[9]; and
4) self-expressive methods [10]–[13], [15]–[47]. Among these
methods, self-expressive ones are the most widely studied due
to their theoretical soundness and promising performance in
real-world applications, such as motion segmentation [16],
face clustering [18], and digit clustering [44]. Self-expressive
methods usually follow a three-step framework.

Step 1) A coefficient matrix is obtained for the data points
by solving an optimization problem.

Step 2) An affinity matrix is constructed from the coef-
ficient matrix by employing exponentiation [13];
absolute symmetrization [15], [16], [29], [31]–[39],
[44]; squaring operations [17]–[24], [26]–[28], [40],
[42]; etc.

Step 3) Spectral techniques [48] are applied to the affinity
matrix and the final clusters are obtained for the
data points.

Self-expressive methods [13], [15]–[24], [26]–[34],
[36]–[47] obtain the coefficient matrix under the self-
expressiveness property [15]: each data point in a union of
multiple subspaces can be linearly represented by the other
data points in the same subspace. In real-world applications,
data points often lie in a union of multiple affine rather than
linear subspaces [16] and, hence, the affine constraint is
introduced [15], [16] to constrain the sum of coefficients to
be 1. However, most self-expressive methods [13], [15]–[18],
[28]–[34], [36]–[44], [46], [47] suffer from three major draw-
backs. First, negative coefficients cannot be explicitly avoided
in these methods in step 1. But it is physically problematic to
reconstruct a real data point by allowing the others to “cancel
each other out” with complex additions and subtractions [49].
Second, under the affine constraint, the coefficient vector is
not flexible enough to handle the real-world cases where the
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Fig. 1. Comparison of coefficient vectors by different representation schemes on the handwritten digit images from MNIST [50]. A digit sample “0” is
used to compute the vector over 500 samples of digits {0, 1, . . . , 9} (50 for each). (a) Vectors solved by a sparse model (e.g., LASSO [51]) are confusing.
(b) Vectors solved by the LSR model with non-negative constraints are noisy. (c) Coefficients solved by LSR with affine constraints are chaotic. (d) LSRs
with the proposed SSR can obtain physically more meaningful coefficients vectors.

data points are often corrupted by noise or outliers. Third,
the exponentiation, absolute symmetrization, or squaring
operations in step 2 force the negative coefficients to be
positive; thus, damaging the inherent correlations among the
data points.

To solve the three drawbacks mentioned above, we propose
a scaled simplex representation (SSR) for self-expressive-
based SC. Specifically, we first extend the affine constraint
to the scaled version in the optimization model, and the coef-
ficient vector will sum up to a scalar s (0 < s < 1) instead
of 1. By tuning s, we can flexibly alter the generative and
discriminative properties of the proposed SSR. Second, we uti-
lize a non-negative constraint to make the representation more
physically meaningful. By introducing that the non-negative
constraint, it has three primary benefits.

1) In step 1, it eliminates the physically problematic sub-
tractions among data points in optimization.

2) The obtained coefficient matrix in step 1 maintains
the inherent correlations among data points by avoid-
ing exponentiation, absolute symmetrization, or squaring
operations when constructing the affinity matrix in
step 2.

3) The non-negativity could potentially enhance the dis-
criminability of the coefficients [52] with the scaled
affine constraint such that a data point is more likely
reconstructed by the data points from the same subspace.

To illustrate the advantages of the proposed SSR, in Fig. 1,
we show the comparison of coefficient vectors solved by dif-
ferent representation schemes on the handwritten digit images
from MNIST [50]. A digit sample “0” is used to compute
the vector over 500 samples of digits {0, 1, . . . , 9} (50 for

each). We observe that: the vector solved by a sparse model
(e.g., LASSO [51]) is confusing, and the coefficients over
the samples of other digits are also nonzero [Fig. 1(a)]. The
vector solved by the least-square regression (LSR) model with
non-negative constraint is noisy [Fig. 1(b)]. The coefficients
solved by LSR with affine constraint are densely distributed
over all samples [Fig. 1(c)]. The LSR with the proposed SSR
can obtain a physically more meaningful coefficients vector
[Fig. 1(d)].

With the introduced SSR, we propose a novel SSR-based SC
(SSRSC) model. The experimental results on several bench-
mark datasets demonstrate that the proposed SSRSC achieves
better performance than the state-of-the-art algorithms. In
summary, our contributions are three-fold.

1) We introduce a new SSR for SC. The proposed SSR
cannot only maintain the inherent correlations among
the data points but also handle practical problems more
flexibly.

2) We propose an SSRSC model for SC. We reformulate
the proposed SSRSC model into a linear equality-
constrained problem with two variables and solve the
problem by an alternating direction method of multipliers
(ADMMs) [53]. Each variable can be updated efficiently,
and the convergence can be guaranteed.

3) We performed comprehensive experiments on several
benchmark datasets, that is, Hopkins 155 [54], ORL,
Extended Yale B [55], MNIST [50], and EMNIST. The
results demonstrate that the proposed SSRSC algorithm
is very efficient and achieves better performance than the
state-of-the-art SC algorithms on motion segmentation,
face clustering, and handwritten digits/letters clustering.
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The remainder of this article is organized as follows. In
Section II, we briefly survey the related work. In Section III,
we first present the proposed SSRSC model, then provide
its optimization, and finally, present the proposed SSRSC-
based SC algorithm. Extensive experiments are conducted in
Section IV to evaluate the SSRSC algorithm and compare it
with the state-of-the-art SC algorithms. The conclusion and
future work are given in Section V.

II. RELATED WORK

A. Prior Work on Subspace Clustering

According to the employed mathematical framework, most
existing SC algorithms [2]–[18], [28]–[34], [36]–[44], [46],
[47], [56] can be divided into four main categories: 1) iterative
methods; 2) algebraic methods; 3) statistical methods; and
4) self-expressive methods. To make this section as com-
pact as possible, please refer to [16] for the introduction of
iterative methods, algebraic methods, and statistical methods.
Self-expressive methods are closely related to this article. They
usually use local information around each data point to com-
pare the similarity of two points. Inspired by the compressed
sensing theory [57], [58], sparse SC (SSC) [15] solves the
clustering problem by seeking a sparse representation of data
points over themselves. By resolving the sparse representa-
tions for all data points and constructing an affinity graph, SSC
automatically finds different subspaces as well as their dimen-
sions from a union of subspaces. A robust version of SSC
that deals with noise, corruptions, and missing observations
is given in [16]. Instead of finding a sparse representation,
the low-rank representation (LRR) method [17], [18], [28]
poses the SC problem as finding an LRR of the data over
themselves. Lu et al. proposed a clustering method based on
LSR [31] to take advantage of data correlations and group
highly correlated data together. The grouping information can
be used to construct an affinity matrix, that is, block diagonal
and can be used for SC through spectral clustering algo-
rithms. Recently, Lin et al. analyzed the grouping effect in
depth and proposed a smooth representation (SMR) frame-
work [32] which also achieves state-of-the-art performance for
the SC problem. Different from SSC, the LRR, LSR, and SMR
algorithms all use normalized cuts [59] in the spectral cluster-
ing step. You et al. proposed a scalable orthogonal matching
pursuit (OMP) method [44] to solve the SSC model [16].
You et al. also developed an elastic-net SC (EnSC) model [45]
which correctly predicted relevant connections among different
clusters. Ji et al. [41] developed the first unsupervised network
for SC by learning the self-expressiveness property [15].

B. Self-Expressiveness-Based Framework

Most state-of-the-art SC methods are designed under the
self-expressive framework. Mathematically, denoting the data
matrix as X = [x1, . . . , xN] ∈ R

D×N , each data point xi ∈ R
D,

i ∈ {1, . . . , N} in X can be expressed as

xi = Xci (1)

where ci ∈ R
N is the coefficient vector. If the data points are

listed column by column, (1) can be rewritten as

X = XC (2)

where C ∈ R
N×N is the coefficient matrix. To find the

desired C, the existing SC methods [15]–[18], [29], [31]–[34],
[36]–[40], [44] impose various regularizations, such as spar-
sity and low rankness. Below, ‖·‖F , ‖·‖1, ‖·‖2, ‖·‖2,1, ‖·‖∗,
λ, and p denote the Frobenius norm, the �1-norm, the �2-norm,
the �2,1-norm, the nuclear norm, the regularization parameter,
and a positive integer, respectively. The optimization models
of several representative works are summarized as follows:

SSC [16] employs sparse and affine constraints

min
C
‖C‖1 s.t. X = XC, 1�C = 1�, diag(C) = 0. (3)

LRR [18] employs a low-rank constraint

min
C
‖X − XC‖2,1 + λ‖C‖∗. (4)

LSR [31] is a vanilla least-square regression

min
C
‖X − XC‖2F + λ‖C‖2F s.t. diag(C) = 0. (5)

SSCOMP [44] is the SSC model solved by OMP

min
ci
‖xi − Xci‖22 s.t. ‖ci‖0 ≤ p, cii = 0. (6)

Once the coefficient matrix C is computed, the affinity
matrix A is usually constructed by exponentiation [13]; abso-
lute symmetrization [15], [16], [29], [31]–[34], [36]–[39], [44];
squaring operations [17], [18], [40], etc. For example, the
widely used absolute symmetrization operation in [15], [16],
[29], [31]–[34], [36]–[39], and [44] is defined by

A =
(
|C| + |C�|

)
/2. (7)

After the affinity matrix A is obtained, spectral clustering tech-
niques [59] are applied to obtain the final segmentation of
the subspaces. However, these self-expressive methods suffer
from one major drawback: the exponentiation, absolute sym-
metrization, and squaring operations will force the negative
entries in C to be positive in A and, hence, damage the inher-
ent correlations among the data points in X. Besides, the affine
constraint in SSC limits its flexibility, making it difficult to
deal with complex real-world applications. In order to rem-
edy these drawbacks, in this article, we introduce the SSR to
tackle the SC problem.

C. Other Constraints for Subspace Clustering

Though sparse [15], [16] or low-rank [17], [18], [60]
representation and ridge regression [31], [61] are widely
used in SC and other vision tasks [62]–[66], there are also
other constraints employed by the existing SC algorithms.
Feng et al. [34] proposed the Laplacian constraint for a block-
diagonal matrix pursuit. The developed block-diagonal SSC
and LRR show clear improvements over SSC and LRR on
SC and graph construction for semisupervised learning. The
log-determinant function is utilized in [67] as an alternative
to the nuclear norm for low-rank constraint. The non-negative
constraint has also been adopted in some recent works for
similarity graph learning [68]–[72]. In these works, the non-
negativity is employed to construct a sparse or low-rank
similarity graph. This article shares the same spirit with these
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works on this point and aims to build a physically reason-
able affinity matrix by employing non-negativity. Recently,
Li et al. [73] proposed to directly learn the affinity matrix
by the diffusion process to spread the local manifold struc-
ture of data along with their global manifolds. This article can
be viewed as propagating the data manifold constraint into
sparsity models to enhance its connectivity for SC. The sim-
plex sparse constraint in [74] is closely related to this article.
But our proposed scaled simplex constraint allows the sum of
coefficients to be a scalar, while, in this article, the sum is
fixed to be 1. Besides, to make our model simpler, we do not
use the diagonal constraint in [74].

III. SIMPLEX REPRESENTATION-BASED

SUBSPACE CLUSTERING

In this section, we propose an SSRSC model, develop an
optimization algorithm to solve it, and present a novel SSRSC-
based algorithm for SC.

A. Proposed SSRSC Model

Given a data matrix X, for each data point xi in X, our
SSRSC model aims to obtain its coefficient vector ci over X
under the scaled simplex constraint {ci ≥ 0, 1�ci = s}. Here,
we employ the LSR as the objective function due to its sim-
plicity. The proposed SSRSC model is formulated as follows:

min
ci
‖xi − Xci‖22 + λ‖ci‖22s.t. ci ≥ 0, 1�ci = s (8)

where 1 is the vector of all ones and s > 0 is a scalar
denoting the sum of entries in the coefficient vector ci. We
use the term “scaled simplex” here because the entries in the
coefficient vector ci are constrained by a scaled simplex, that
is, they are non-negative and sum up to a scalar s.

We can also rewrite the SSR-based model (8) for all N data
points in the matrix form

min
C
‖X − XC‖2F + λ‖C‖2F

s.t. C ≥ 0, 1�C = s1� (9)

where C ∈ R
N×N is the coefficient matrix. Here, the constraint

C ≥ 0 favors positive values for entries corresponding to
data points from the same subspace, while suppressing entries
corresponding to data points from different subspaces, thus
making the coefficient matrix C discriminative. The constraint
1�C = s1� limits the sum of each coefficient vector ci to be s,
thus making the representation more discriminative since each
entry should be non-negative.

B. Model Optimization

The proposed SSRSC model (9) cannot be solved ana-
lytically. In this section, we solve it by employing variable
splitting methods [75], [76]. Specifically, we introduce an aux-
iliary variable Z into the SSRSC model (9) and reformulate it
as a linear equality-constrained problem

min
C,Z
‖X − XC‖2F + λ‖Z‖2F

s.t. Z ≥ 0, 1�Z = s1�, Z = C (10)

whose solution with respect to C coincides with the solu-
tion of (9). Since the objective function in (10) is separable
with respect to the variables C and Z, it can be solved using
the ADMM [53]. The corresponding augmented Lagrangian
function is

L(C, Z,�, ρ)

= ‖X − XC‖2F + λ‖Z‖2F + 〈�, Z− C〉 + ρ

2
‖Z− C‖2F

= ‖X − XC‖2F + λ‖Z‖2F +
ρ

2

∥∥∥∥Z− C+ 1

ρ
�

∥∥∥∥
2

F

= ‖X − XC‖2F +
2λ+ ρ

2

∥∥∥∥Z− ρ

2λ+ ρ

(
C− 1

ρ
�

)∥∥∥∥
2

F

+ λρ

2λ+ ρ

∥∥∥∥C− 1

ρ
�

∥∥∥∥
2

F
(11)

where � is the augmented Lagrangian multiplier and ρ > 0
is the penalty parameter. Denote by (Ck, Zk) and �k, the
optimization variables and Lagrange multiplier at iteration k
(k = 0, 1, 2, . . . ,), respectively. We initialize the variables C0,
Z0, and �0 to be conformable zero matrices. By taking the
derivatives of the Lagrangian function L with respect to C and
Z, and setting them to be zeros, we can alternatively update
the variables as follows.

1) Updating C While Fixing Zk and �k

Ck+1 = arg min
C
‖X − XC‖2F +

ρ

2

∥∥∥∥C−
(

Zk + 1

ρ
�k

)∥∥∥∥
2

F
. (12)

This is a standard LSR problem with a closed-form solution

Ck+1 =
(

X�X + ρ

2
I
)−1

(
X�X + ρ

2
Zk + 1

2
�k

)
. (13)

We note that the complexity for updating C is O(N3) when
there are N data points in the data matrix X. This cube com-
plexity largely hinders the practical usage of the proposed
method. In order to improve the speed (while maintaining the
accuracy) of SSRSC, we employ the Woodbury formula [77]
to compute the inversion in (13) as

(
X�X + ρ

2
I
)−1 = 2

ρ
I −

(
2

ρ

)2

X�
(

I + 2

ρ
XX�

)−1

X. (14)

By this step, the complexity of updating C is reduced from
O(N3) to O(DN2). Since (X�X + (ρ/2)I)−1 is not updated
during iterations, we can also precompute it and store it before
iterations. This further saves the abundant computational costs.

2) Updating Z While Fixing Ck and �k

Zk+1 = arg min
Z

∥∥∥∥Z− ρ

2λ+ ρ

(
Ck+1 − ρ−1�k

)∥∥∥∥
2

F

s.t. Z ≥ 0, 1�Z = s1�. (15)

This is a quadratic programming problem with a strictly con-
vex objective function and a close and convex constraint,
so there is a unique solution. As such, problem (15) can
be solved using, for example, active set methods [78], [79]
or projection-based methods [80]–[82]. Here, we employ the
projection-based method [81], whose computational complex-
ity is O(N log N) to project a vector of length N onto a
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Algorithm 1 Projection of Vector uk+1 Onto a Simplex

Input: Data point uk+1 ∈ R
N , scalar s;

1. Sort uk+1 into w: w1 ≥ w2 ≥ · · · ≥ wN ;
2. Find α = max{1 ≤ j ≤ N:wj + 1

j (s−
∑j

i=1 wi) > 0};
3. Define β = 1

α
(s−∑α

i=1 wi);
Output: zk+1: zi

k+1 = max{ui
k+1 + β, 0}, i = 1, . . . , N.

Algorithm 2 Solve the SSRSC Model (10) via ADMM
Input: Data matrix X, Tol > 0, ρ > 0, K;
Initialization: C0 = Z0 = �0 = 0, T = False, k = 0;
While (T == False) do
1. Update Ck+1 by Eqn. (13);
2. Update Zk+1 by Eqn. (15);
3. Update �k+1 by Eqn. (16);
4. if (Convergence condition is satisfied) or (k ≥ K)
5. T ← True;

end if
end while
Output: Matrices C and Z.

Fig. 2. Convergence curves of ‖Ck+1 − Zk+1‖F (red line), ‖Zk+1 − Zk‖F
(blue line), and ‖Ck+1 − Ck‖F (green line) of the proposed SSRSC on the
“1R2RC” sequence from the Hopkins155 dataset [54].

simplex. Denoting by uk+1, an arbitrary column of [ρ/(2λ+
ρ)](Ck+1 − ρ−1�k), the solution of zk+1 (the corresponding
column in Zk+1) can be solved by projecting uk+1 onto a
simplex [81]. The solution of problem (15) is summarized in
Algorithm 1.

3) Updating � While Fixing Ck and Zk

�k+1 = �k + ρ(Zk+1 − Ck+1). (16)

We repeat the above alternative updates until a certain con-
vergence condition is satisfied or the number of iterations
reaches a preset threshold K. Under the convergence con-
dition of the ADMM algorithm, ‖Ck+1 − Zk+1‖F ≤ Tol,
‖Ck+1−Ck‖F ≤ Tol, and ‖Zk+1−Zk‖F ≤ Tol must be simul-
taneously satisfied, where Tol = 0.01 tolerates small errors.
Since the objective function and constraints are both convex,
problem (10) solved by ADMM is guaranteed to converge
at a global optimal solution. We summarize these updating
procedures in Algorithm 2.

Convergence nalysis: The convergence of Algorithm 2 can
be guaranteed since the overall objective function (10) is
convex with a global optimal solution. In Fig. 2, we plot
the convergence curves of the errors of ‖Ck+1 − Zk+1‖F ,
‖Zk+1 − Zk‖F , and ‖Ck+1 − Ck‖F . One can see that they

are reduced to less than Tol = 0.01 simultaneously in five
iterations.

C. Theoretical Analysis

Our optimization problem (9) is a convex optimization
problem, which means f (C) := ‖X − XC‖2F + λ‖C‖2F is a
convex function and the set S := {C|C ≥ 0, 1�C = s1�} is a
convex set. Then, the function f has a minimum on the hyper-
plane S := {C|1�C = s1�}, which is the linear span of S .
Below, we discuss the solution space of f over S .

Theorem 1: Suppose C∗ is the minimum of the convex
function f over the convex set S . If C∗ is not the minimum
of f on S , then C∗ is on the boundary of S: ∂S .

Proof: We first make an assumption that C∗ /∈ ∂S , then
we will derive a contradiction. If our assumption holds, there
exists a high-dimensional open sphere Br(C∗) = {C|‖C −
C∗‖ < r} ⊂ R

N×N centered at C∗ ∩ S with radius r > 0,
such that for all C ∈ Br, f (C) ≥ f (C∗) holds.

We consider ∀D ∈ S , ∃λ ∈ (0, 1) such that C∗+λ(D−C∗) ∈
Br(C∗). In fact, we can set λ < min([r/(‖D−C∗‖)], 1). Then,
we have ‖C∗ + λ(D− C∗)− C∗‖ = ‖λ(D− C∗)‖ < r, which
means C∗ + λ(D− C∗) ∈ Br(C∗). In this way, we have

f
(
C∗ + λ

(
D− C∗

)) ≥ f
(
C∗

)
. (17)

However, due to the convexity of f , we have the following
Jensen’s inequality:

f
(
C∗ + λ

(
D− C∗

)) = f
(
(1− λ)C∗ + λD

)

≤ (1− λ)f
(
C∗

)+ λf (D). (18)

Combining this with (17), we obtain λf (D) ≥ λf (C∗) and,
hence, f (D) ≥ f (C∗), ∀D ∈ R

N×N . Then, C∗ is the minimum
of f on the hyperplane S , resulting in a contradiction.

D. Discussion

The constraint “1�c = 1” has already been used in
SSC [15], [16] to deal with the presence of affine, rather than
linear subspaces. However, limiting the sum of the coefficient
vector c to be 1 is not flexible enough for real-world clustering
problems. What is more, suppressing the sum of the entries in
the coefficient vector c can make it more discriminative, since
these entries should be non-negative and sum up to a scalar s.
Considering the extreme case where s is nearly zero, each data
point must be represented by its most similar data points in the
homogeneous subspace. To this end, in our proposed SSRSC
model, we extend the affine constraint of “summing up to 1”
to a scaled affine constraint of “summing up to a scalar s.” In
our experiments (please refer to Section IV), we observe the
improved performance of SSRSC on SC by this extension.

In real-world applications, data are often corrupted by
outliers due to ad-hoc data-collection techniques. Existing
SC methods deal with outliers by explicitly modeling them
as an additional variable, and updating this variable using
the ADMM algorithm. For example, in the seminal work
of SSC [15], [16] and its successors [31], [33], [37], [39],
cii is set as 0 for xi, indicating that each data point
cannot be represented by itself, thus avoiding the trivial
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Algorithm 3 SC by SSRSC
Input: A set of data points X = {x1, . . . , xN} lying in

a union of n subspaces {Sj}nj=1;
1. Obtain the coefficient matrix C by solving the SSRSC
model:

minC ‖X − XC‖2F + λ‖C‖2F s.t. C ≥ 0, 1�C = s1�;
2. Construct the affinity matrix by

A = C+C�
2 ;

3. Apply spectral clustering [83] to the affinity matrix;
Output: Segmentation of data: X1, . . . , Xn.

solution of identity matrix. However, this brings additional
computational costs and prevents the entire algorithm from
converging [16], [18]. Different from these existing meth-
ods [16], [31], [33], [37], [39], we do not consider the con-
straint of cii = 0 for three major reasons. First, the positive
λ in the regularization term can naturally prevent the trivial
solution of identity matrix C = I. Second, cii �= 0 has a clear
physical meaning, allowing a sample xi in the subspace to be
partially represented by itself. This is particularly useful when
xi is corrupted by noise. By removing the constraint of cii = 0,
our proposed SSRSC model is more robust to noise, as will
be demonstrated in the ablation study in Section IV-D.

E. Subspace Clustering via Simplex Representation

SC Algorithm: Denote by X = {xi ∈ R
D}Ni=1, a set of

data points drawn from a union of n subspaces {Sj}nj=1. Most
existing spectral clustering-based SC algorithms [16], [18],
[29], [32], [37], [44] first compute the coefficient matrix C,
and then construct a non-negative affinity matrix A from C
by exponentiation [13]; absolute symmetrization [15], [16],
[29], [31]–[34], [36], [37], [39], [44]; squaring operations [17],
[18], [40]; etc. In contrast, in our proposed SSRSC model,
the coefficient matrix is guaranteed to be non-negative by the
introduction of a simplex constraint. Hence, we can remove
the absolute operation and construct the affinity matrix by

A =
(

C+ C�
)
/2. (19)

As a common postprocessing step in [15], [16], [29], [17],
[18], [31]–[34], [36], [37], [39], [40], and [44], we apply
the spectral clustering technique [83] to the affinity matrix A
and obtain the final segmentation of data points. Specifically,
we employ the widely used normalized cut algorithm [59] to
segment the affinity matrix. The proposed SSRSC-based SC
algorithm is summarized in Algorithm 3.

Complexity Analysis: Assume that there are N data points
in the data matrix X. In Algorithm 2, the costs for updat-
ing C and Z are O(N2D) and O(N2 log N), respectively. The
costs for updating � and ρ are negligible compared to the
updating costs of C and Z. As such, the overall complexity of
Algorithm 2 is O(max(D, log N)N2K), where K is the num-
ber of iterations. The costs for affinity matrix construction and
spectral clustering in Algorithm 3 can be ignored. Hence, the
overall cost of the proposed SSRSC is O(max(D, log N)N2K)

for data matrix X ∈ R
D×N .

IV. EXPERIMENTS

In this section, we first compare the proposed SSRSC
with the state-of-the-art SC methods. The comparison is per-
formed on five benchmark datasets on motion segmentation
for video analysis, human faces clustering, and handwritten
digits/letters clustering. Then, we validate the effectiveness
of the proposed scaled simplex constraints for SC through
comprehensive ablation studies.

A. Implementation Details

The proposed SSRSC model (9) is solved under the
ADMM [53] framework. There are four parameters to be
determined in the ADMM algorithm: 1) the regularization
parameter λ; 2) the sum s of the entries in the coefficient
vector; and 3) the penalty parameter ρ, and the iteration num-
ber K. In all experiments, we fix s = 0.5, ρ = 0.5, and K = 5.
As in most competing methods [13]–[18], [29], [31]–[34],
[36]–[40], [44], parameter λ is tuned on each dataset to achieve
the best performance of SSRSC on that dataset. The influence
of λ on each dataset will be introduced in Section IV-C. All
experiments are run under the MATLAB2014b environment
on a machine with a CPU of 3.50 GHz and 12-GB RAM.

B. Datasets

We evaluate the proposed SSRSC method on the
Hopkins155 dataset [54] for motion segmentation, the
Extended Yale B [55] and ORL [84] datasets for human
face clustering, and the MNIST [50] and EMNIST [85] for
handwritten digits/letters clustering.

The Hopkins155 dataset [54] contains 155 video sequences,
120 of which contain two moving objects and 35 of which
contain three moving objects, corresponding to 2 or 3 low-
dimensional subspaces of the ambient space. On average, each
two-motion sequence has 30 frames and each frame contains
N = 266 data points, while each three-motion sequence has
29 frames and each frame contains N = 393 data points.
Similar to the experimental settings in the previous meth-
ods, such as SSC [16], on this dataset, we employ principal
component analysis (PCA) [86] to project the original tra-
jectories of different objects into a 12-D subspace, in which
we evaluate the comparison methods. This dataset [54] has
been widely used as a benchmark to evaluate the SC methods
for motion segmentation. Fig. 3 presents some segmentation
examples from the Hopkins155 dataset [54], where different
colors indicate different moving objects.

The Extended Yale B dataset [55] contains face images of 38
human subjects, and each subject has 64 near-frontal images
(grayscale) taken under different illumination conditions. The
original images are of size 192 × 168 pixels and we resize
them to 48 × 42 pixels in our experiments. For dimension
reduction purposes, the resized images are further projected
onto a 6n-dimensional subspace using PCA, where n is the
number of subjects (or subspaces) selected in our experiments.
Following the experimental settings in SSC [16], we divide
the 38 subjects into 4 groups, consisting of subjects 1 to 10,
subjects 11 to 20, subjects 21 to 30, and subjects 31 to 38.
For each of the first three groups, we select n ∈ {2, 3, 5, 8, 10}
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Fig. 3. Exemplar motion segmentation of one frame from different sequences
in the Hopkins155 dataset [54].

Fig. 4. Face images from the Extended Yale B dataset [55] (top) and the
ORL dataset [84] (bottom).

subjects, while for the last group, we choose n ∈ {2, 3, 5, 8}.
Finally, we apply SC algorithms for each set of n subjects.
Fig. 4 (top) shows some face images from Extended Yale B,
captured under different lighting conditions.

The ORL dataset [84] contains overall 400 human face
images of 40 subjects, each having 10 samples. Similar to [41],
we resize the original face images from 112× 92 to 32× 32.
For each human subject, the face images were taken under
varying lighting conditions, with different facial expressions
(e.g., open eyes or closed eyes, smiling or not smiling, etc.), as
well as different facial details (e.g., w/ glasses or w/o glasses).
The ORL dataset is more difficult to tackle than the Extended
Yale B [55] for two reasons: 1) its varying face images varies
much more complex and 2) it only contains 400 images, much
smaller than Extended Yale B (2432 images). Fig. 4 (bottom)
shows some face images from ORL.

MNIST dataset [50] contains 60 000 grayscale images of
10 digits (i.e., {0, . . . , 9}) in the training set and 10 000 images
in the testing set. The images are of size 28×28 pixels. In our
experiments, we randomly select Ni ∈ {50, 100, 200, 400, 600}
images for each of the 10 digits. Following [44], for each
image, a set of feature vectors is computed using a scatter-
ing convolution network (SCN) [87]. The final feature vector
is a concatenation of the coefficients in each layer of the
network and is translation invariant and deformation stable.

Fig. 5. Digit images from the MNIST dataset [50].

Each feature vector is 3472-D. The feature vectors for all
images are then projected onto a 500-D subspace using PCA.
Fig. 5 shows some examples of the handwritten digit images
in this dataset.

EMNIST dataset [85] is an extension of the MNIST dataset
that contains grayscale handwritten digits and letters. This
dataset contains overall 190 998 images corresponding to 26
lowercase letters. We use them as the data for a 26-class
clustering problem. The images are of size 28 × 28. In our
experiments, we randomly select Ni = 500 images for each
of the 26 digits/letters. Following [47], for each image, a set
of feature vectors is computed using an SCN [87], which is
translation invariant and deformation stable. The feature vec-
tors are 3472-D, and the feature vectors for all images are
projected onto a 500-D subspace using PCA.

C. Comparison With State-of-the-Art Methods

Comparison Methods: We compare the proposed SSRSC with
several state-of-the-art SC methods, including SSC [15], [16];
LRR [17], [18]; LRSC [29]; LSR [31]; SMR [32]; S3C [37],
[38]; RSIM [14]; SSCOMP [44]; EnSC [45]; DSC [41]; and
ESC [47]. For SSRSC, we fix s = 0.5, or as reported in the
ablation study, that is, s = 0.9 on Hopkins155, s = 0.25 on
Extended YaleB, s = 0.4 on ORL, and s = 0.15 on MNIST.
For the SMR method, we use the J1 affinity matrix [i.e., (7)]
in Section II as described in [32], for fair comparison. For
the other methods, we tune their corresponding parameters on
each of the three datasets, that is, the Hopkins155 dataset [54]
for motion segmentation, the Extended Yale B dataset [55] for
face clustering, and the MNIST dataset [50] for handwritten
digit clustering, to achieve their best clustering results.

Comparison on Affinity Matrix: The affinity matrix plays a
key role in the success of SC methods. Here, we visualize
the affinity matrix of the proposed SSRSC and the com-
parison methods on the SC problem. We run the proposed
SSRSC algorithm and the competing methods [14], [16], [18],
[29], [31], [37], [38], [44], [45] on the MNIST dataset [50].
The training set contains 6000 images for each digit in
{0, 1, . . . , 9}. We randomly select 50 images for each digit,
and use 500 total images to construct the affinity matrices
using these competing SC methods. The results are visualized
in Fig. 6. As can be seen, the affinity matrix of SSRSC shows
better connections within each subspace and generates less
noise than most of the other methods. Though LSR [31] and
RSIM [14] have less noise than our proposed SSRSC, their
affinity matrices suffer from strong diagonal entries, indicating
that for these two methods, the data points are mainly recon-
structed by themselves. With the scaled simplex constraint, the
proposed SSRSC algorithm can better exploit the inherent cor-
relations among the data points and achieve better clustering
performance than the other compared methods.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Affinity matrices and corresponding average clustering errors by different methods on the handwritten digit images from MNIST [50]. Fifty images
for each digit of {0, 1, . . . , 9} are used to compute the affinity matrix by different methods. All images are normalized to [0, 1] by dividing the maximal
entries in the corresponding affinity matrices. (a) SSC [16]: 16.99%. (b) LRR [18]: 17.97%. (c) LRSC [29]: 24.16%. (d) LSR [31]: 24.98%. (e) S3C [38]:
15.92%. (f) RSIM [14]: 18.13%. (g) SSCOMP [44]: 16.36%. (h) SSRSC: 11.81%

Fig. 7. Average clustering errors (%) of the proposed SSRSC algorithm with
different scalar s on the Hopkins155 dataset [54].

Results on Motion Segmentation: We first study how param-
eter s influences the average clustering errors of the proposed
SSRSC algorithm. The clustering errors with respect to the
value of s are plotted in Fig. 7. As can be seen, the proposed
SSRSC obtains an average clustering error of 1.53% when
s = 0.5. Note that SSRSC achieves its lowest average clus-
tering error of 1.04% when s = 0.9. The parameter λ is set
as λ = 0.001. We then compare the proposed SSRSC with

the other competing SC algorithms [14], [16], [18], [29], [31],
[32], [37], [38], [44], [45]. The results on the average clus-
tering errors are listed in Table I, from which we can see
that the proposed SSRSC achieves the lowest clustering error.
Besides, the speed of the proposed SSRSC approach is only
slightly slower than LRSC, LSR, SSCOMP, and EnSC, and
much faster than the other competing methods. Note that the
fast speed of SSRSC is due to both the efficient solution in
each iteration and fewer iterations in the ADMM algorithm.

Results on Human Face Clustering: Here, we compare the
proposed SSRSC algorithm with the competing methods on
the commonly used Extended Yale B dataset [55] and ORL
dataset [84] for human face clustering. On ORL [84], we also
compared the deep SC (DSC) method, which achieves state-
of-the-art performance on this dataset.

We study how the scalar s influences the clustering errors
(%) of the proposed SSRSC algorithm and takes the Extended
Yale B dataset [55] for an example. The average clustering
errors with respect to the value of s are plotted in Fig. 8. As can
be seen, SSRSC achieves an average clustering error of 3.26%
when s = 0.5 and achieves the lowest average clustering error
of 2.16% when s = 0.25. We set λ = 0.005.

The comparison results of different algorithms are listed in
Tables II and III. From Table II, we observe that for different
numbers ({2, 3, 5, 8, 10}) of clustering subjects, the average
clustering errors of SSRSC are always significantly lower than
the other competing methods. For example, when clustering
10 subjects, the average error of SSRSC (when fixing s = 0.5)
is 5.10%, while the errors of the other methods are 10.94% for
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TABLE I
AVERAGE CLUSTERING ERRORS (%) AND SPEED (IN SECONDS) OF DIFFERENT ALGORITHMS ON THE HOPKINS155 DATASET [54] WITH THE 12-D

DATA POINTS OBTAINED USING PCA. SSRSC CAN ACHIEVE CLUSTERING ERROR OF 1.04% WHEN s = 0.9

Fig. 8. Average clustering errors (%) of the proposed SSRSC algorithm with
different scalar s on the Extended Yale B dataset [55].

SSC, 28.54% for LRR, 30.05% for LRSC, 28.59% for LSR,
28.18% for SMR, 5.16% for S3C, 6.56% for RSIM, 14.80%
for SSCOMP, and 5.96% for EnSC. The performance gain of
SSRSC (5.10%) over its baseline LSR (28.59%) demonstrates
the power of simplex representation on human face clustering.
In terms of running time, the proposed SSRSC algorithm is
shown to be comparable to SSCOMP, which is the most effi-
cient algorithm among all competing methods. In Table III,
we can observe that the proposed SSRSC method achieves a
lower clustering error than the previous methods except the
deep learning-based DSC. This demonstrates the advantages
of the proposed SSR representation over previous sparse or
low-rank representation frameworks on human face clustering.

Results on Handwritten Digit Clustering: For the digit
clustering problem, we evaluated the proposed SSRSC with
the competing methods on the MNIST dataset [50] and the
EMNIST dataset [85]. We follow the experimental settings in
SSCOMP [44]. On the MNIST [50], the testing data consist
of a randomly chosen number of Ni ∈ {50, 100, 200, 400, 600}
images for each of the 10 digits, while on the EMNIST [85],
the testing data consist of Ni = 500 images for each of the
26 digits or letters. The feature vectors are extracted from
the SCN [87]. The features extracted from the digit/letter
images are originally 3472-D, and are projected onto a 500-D
subspace using PCA.

We evaluate the influence of the scalar s on the average
clustering error (%) of SSRSC on the MNIST dataset. The
curve of clustering errors with respect to s is plotted in Fig. 9.
Average clustering errors are computed over 20 trials sampled

Fig. 9. Average clustering errors (%) of the proposed SSRSC with different
s on MNIST [50], with 600 images for each digit.

from 6000 randomly selected images (Ni = 600). As can be
seen, the proposed SSRSC algorithm achieves an average clus-
tering error of 4.53% and obtains its lowest average clustering
error (2.52%) when s = 0.15, with 600 images for each digit
from the MNIST dataset. Similar results can be observed on
the EMNIST dataset [85]. The parameter λ is set as λ = 0.01.

We list the average clustering errors (%) of the compar-
ison methods in Tables IV and V. It can be seen that the
proposed SSRSC algorithm performs better than all other com-
peting methods. For example, on the MNIST dataset, SSRSC
achieves clustering errors of 11.81%, 6.90%, 5.65%, 5.31%,
and 4.53% when the number of digit images are 500, 1000,
2000, 4000, and 6000, respectively. On the EMNIST dataset,
SSRSC achieves clustering error of 23.45%, when the num-
ber of images for each digit/letter are 500. The results of
the proposed SSRSC on the two datasets are much better
than the other competing algorithms, including the recently
proposed EnSC and ESC, respectively. This validates the
advantages of the proposed SSR over previous sparse or LRR,
for handwritten digit/letter clustering.

D. Ablation Study: Effectiveness of Simplex Representation

We perform comprehensive ablation studies on the
Hopkins155 [54], Extended Yale B [55], and MNIST [50]
datasets to validate the effectiveness of the proposed SSRSC
model. SSRSC includes two constraints, that is, c ≥ 0 and
1�c = s. To analyze the effectiveness of each constraint, we
compare the proposed SSRSC model with several baseline
methods.
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TABLE II
AVERAGE CLUSTERING ERRORS (%) AND SPEED (IN SECONDS) OF DIFFERENT ALGORITHMS ON THE EXTENDED YALE B DATASET [55] WITH THE

6n-DIMENSIONAL (n IS THE NUMBER OF SUBJECTS) DATA POINTS OBTAINED USING PCA

TABLE III
AVERAGE CLUSTERING ERRORS (%) AND SPEED (IN SECONDS) OF DIFFERENT ALGORITHMS ON THE ORL DATASET [84] WITH THE 32× 32 DATA

POINTS OBTAINED BY RESIZING. SSRSC CAN ACHIEVE A CLUSTERING ERROR OF 21.25% WHEN s = 0.4

TABLE IV
AVERAGE CLUSTERING ERRORS (%) AND SPEED (IN SECONDS) OF DIFFERENT ALGORITHMS ON THE MNIST DATASET [50]. THE FEATURES ARE

EXTRACTED FROM A SCATTERING NETWORK AND PROJECTED ONTO A 500-D SUBSPACE USING PCA. THE EXPERIMENTS ARE REPEATED 20 TIMES

AND THE AVERAGE RESULTS ARE REPORTED

TABLE V
AVERAGE CLUSTERING ERRORS (%) AND SPEED (IN SECONDS) OF DIFFERENT ALGORITHMS ON THE EMNIST DATASET [85]. THE FEATURES ARE

EXTRACTED FROM A SCATTERING NETWORK AND PROJECTED ONTO A 500-D SUBSPACE USING PCA. THE EXPERIMENTS ARE REPEATED 10 TIMES

AND THE AVERAGE RESULTS ARE REPORTED. SSRSC CAN ACHIEVE CLUSTERING ERROR OF 22.76% WHEN s = 0.35

TABLE VI
SUMMARY OF THE PROPOSED SSRSC AND THREE BASELINE METHODS LSR, NLSR, AND SLSR

The first baseline is the trivial LSR model as follows:

LSR: min
C
‖X − XC‖2F + λ‖C‖2F. (20)

By removing each individual constraint in the simplex con-
straint of the proposed SSRSC model (9), we have the second

baseline method, called the non-negative LSR (NLSR) model

NLSR: min
C
‖X − XC‖2F + λ‖C‖2F s.t. C ≥ 0. (21)

The NLSR model can be formulated by either removing the
scaled affinity constraint 1�c = s from SSRSC or adding a
non-negative constraint to the LSR model (20). For structural
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TABLE VII
AVERAGE CLUSTERING ERRORS (%) OF LSR, NLSR, SLSR (s = 0.9),

AND SSRSC (s = 0.9) ON HOPKINS155 [54], WITH THE 12-D
DATA POINTS OBTAINED BY PCA

TABLE VIII
AVERAGE CLUSTERING ERRORS (%) OF LSR, NLSR, SLSR (s = 0.22),
AND SSRSC (s = 0.25) ON EXTENDED YALE B [55], WITH THE 6n-D (n

IS THE NUMBER OF SUBJECTS) DATA POINTS OBTAINED BY PCA

clearance of this article, we put the solution of the NLSR
model (21) in the supplementary file. We can also remove
the non-negative constraint C ≥ 0 in the scaled simplex set
{C ∈ R

N×N |C ≥ 0, 1�C = s1�}, and obtain a scaled-affine
LSR (SLSR) model

SLSR: min
C
‖X − XC‖2F + λ‖C‖2F s.t. 1�C = s1�.

(22)

The solution of the SLSR model (22) is also provided in the
supplementary file.

The proposed SSRSC method, as well as the three baseline
methods, can be expressed in a standard form

min
C

Data Term+ Regularization Term

s.t. Constraints. (23)

For the NLSR, SLSR, and SSRSC methods, the data and
regularization terms are the same as those of the basic
LSR model (9), that is, ‖X − XC‖2F and λ‖C‖2F , respec-
tively. The difference among these comparison methods lies
in the Constraints. In Table VI, we summarize the proposed
SSRSC, and the three baseline methods LSR, NLSR, and
SLSR.

In Tables VII–IX, we list the average clustering errors (%)
of the proposed SSRSC and three baseline methods on the
Hopkins155 [54], Extended Yale B [55], and MNIST [50]
datasets. Note that here we tune the parameter s to achieve
the best performance of SSRSC on different datasets.

Effectiveness of the Non-Negative Constraint: The effec-
tiveness of the non-negative constraint C ≥ 0 in the
proposed SSRSC model can be validated from two comple-
mentary aspects. First, it can be validated by evaluating the
performance improvement of the baseline methods NLSR (21)
over LSR [31]. Since the only difference between them is
the additional non-negative constraint in NLSR (21), the
performance gain of NSLR over LSR can directly reflect the
effectiveness of the non-negative constraint. Second, the effec-
tiveness of the non-negative constraint can also be validated
by comparing the performance of the proposed SSRSC (9)
and the baseline method SLSR (22). Since SLSR (22) lacks
a non-negative constraint when compared to SSRSC, the

TABLE IX
AVERAGE CLUSTERING ERRORS (%) OF LSR, NLSR, SLSR (s = 0.24),
AND SSRSC (s = 0.15) ON THE MNIST DATASET [50]. THE FEATURES

OF THE DATA POINT ARE EXTRACTED FROM A SCATTERING NETWORK

[87] AND PROJECTED ONTO A 500-D SUBSPACE OBTAINED USING PCA.
THE EXPERIMENTS ARE INDEPENDENTLY REPEATED 20 TIMES

performance gain of SSRSC over SLSR should be due to the
introduced non-negativity.

The results listed in Table VII show that on the Hopkins155
dataset, the baseline methods LSR and NLSR achieve aver-
age clustering errors of 3.67% and 1.75%, respectively. This
demonstrates that by adding the non-negative constraint to
LSR, the resulting baseline method NLSR has a significantly
reduced clustering error. Besides, the average clustering errors
of SSRSC (s = 0.9) and SLSR (s = 0.9) are 1.04% and 3.16%,
respectively. This shows that if we remove the non-negative
constraint from SSRSC, the resulting SLSR will have a sig-
nificantly lower clustering performance. Similar trends can
be found from Tables VIII and IX on the Extended Yale B
dataset [55] and the MNIST dataset [50], respectively. These
results validate the contribution of the non-negative constraint
to the success of the proposed SSRSC model.

Effectiveness of the Scaled-Affine Constraint: The effective-
ness of the scaled-affine constraint can be validated from two
aspects. First, it can be validated by comparing the baseline
methods LSR (20) and SLSR (22), which are summarized
in Table VI. Since the only difference between them is that
SLSR contains an additional scaled affine constraint over LSR,
the performance gain of SLSR over LSR can directly val-
idate the scaled affine constraint’s effectiveness. Second, the
effectiveness can also be validated by comparing the proposed
SSRSC (9) and the baseline NLSR (21). This is because NLSR
removes the scaled affine constraint from SSRSC.

From the results listed in Tables VII, we observe that on
the Hopkins155 dataset [54], the proposed SSRSC (s = 0.9)
can achieve lower clustering error (1.04%) than the baseline
method NLSR (1.75%). Similar conclusions can be drawn
from Tables VIII and IX for experiments on the Extended
Yale B dataset [55] and the MNIST dataset [50], respectively.
All of these comparisons demonstrate that the scaled affine
constraint is another essential factor for the success of SSRSC.

Effectiveness of the Simplex Constraint: We find that the
proposed simplex constraint, that is, the integration of the
non-negative and scaled affine constraints, can further boost
the performance of SC. This can be validated by comparing
the performance of the proposed SSRSC (9) and the base-
line method LSR (20). The results listed in Tables VII–IX
show that on all three commonly used datasets, the proposed
SSRSC can achieve much lower clustering errors than the
baseline method LSR. For example, on the MNIST dataset,
the clustering errors of SSRSC (s = 0.15) are 10.29%,
5.40%, 4.36%, 3.09%, and 2.52% when we randomly select
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TABLE X
AVERAGE CLUSTERING ERRORS (%) OF SSRSC (s = 0.9), SSRSC-DIAG

(s = 0.8), AND RGC ON THE HOPKINS155 DATASET [54], WITH THE

12-D DATA POINTS OBTAINED USING PCA

50, 100, 200, 400, and 600 images for each of the 10 digits,
respectively. Meanwhile, the corresponding clustering errors
of the baseline method LSR are 24.98%, 20.24%, 20.56%,
22.24%, 20.12%, respectively. SSRSC performs much better
than LSR in all cases. Similar trends can also be found in
Table VII for the Hopkins155 dataset and in Table VIII for
the Extended Yale B dataset.

Influence of Diagonal Constraint: One key difference of our
SSRSC model to the previous models is that in SSRSC, we
get rid of the diagonal constraint diag(C) = 0 considering
that the practical data are often noisy. To achieve this, we
compare the method on the Hopkins155 dataset, together with
the SSRSC model with an additional diagonal constraint of
diag(C) = 0 (we call this method SSRSC-diag). The results
are listed in Table X. One can see that the variant SSRSC-
diag achieves inferior performance with the original SSRSC.
We also compare a state-of-the-art clustering method, that is,
RGC [88], designed specifically for clustering noisy data. RGC
achieves slightly better performance than SSRSC-diag, but is
still inferior to our SSRSC without the diagonal constraint.
This demonstrates the necessity of getting rid of the diagonal
constraint in our SSRSC model to deal with noisy data.

V. CONCLUSION

In this article, we proposed an SSR-based model for spectral
clustering-based SC. Specifically, we introduced the non-
negative and scaled affine constraints into a simple LSR model.
The proposed SSRSC model can reveal the inherent correla-
tions among data points in a highly discriminative manner.
Based on the SSRSC model, a novel spectral clustering-based
algorithm was developed for SC. Extensive experiments on
three benchmark clustering datasets demonstrated that the
proposed SSRSC algorithm is very efficient and achieves
better clustering performance than the state-of-the-art SC
algorithms. The significant improvements of SSRSC over
the baseline models demonstrated the effectiveness of the
proposed simplex representation.

This article can be extended in at least three directions.
First, it is promising to extend the proposed SSRSC model to
the nonlinear version by using kernel approaches [60], [69],
[70], [89]. Second, it is worth accelerating the proposed algo-
rithm for scalable SC [47], [90]. Third, adapting the proposed
SSRSC model for imbalanced datasets [47], [89] is also a
valuable direction.
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