Supplementary file to
“Scaled Simplex Representation for Subspace Clustering”

Jun Xu1,2, Mengyang Yu2, Ling Shao2, Senior Member, IEEE, Wangmeng Zuo3, Senior Member, IEEE, Deyu Meng4, Lei Zhang5, Fellow, IEEE, David Zhang5,6, Fellow, IEEE
1College of Computer Science, Nankai University, Tianjin, China
2Inception Institute of Artificial Intelligence, Abu Dhabi, UAE
3School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
4School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China
5Department of Computing, The Hong Kong Polytechnic University, Hong Kong SAR, China
6School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen, China

I. SOLUTION OF THE NLSR MODEL

The NLSR model (Eqn. (20) in the main paper) does not have an analytical solution. We employ a variable splitting method \cite{1}, \cite{2} to solve it. By introducing an auxiliary variable Z, we can reformulate the NLSR model into a linear equality-constraint problem with two variables C and Z:

$$\min_{C, Z} \|X - XC\|_F^2 + \lambda\|C\|_F^2 \quad \text{s.t.} \quad Z = C, Z \geq 0. \quad (1)$$

Since the objective function is separable w.r.t. the variables C and Z, problem (1) can be solved under the alternating direction method of multipliers (ADMM) \cite{3} framework. The Lagrangian function of the problem (1) is

$$L(C, Z, \Delta, \lambda, \rho) = \|X - XC\|_F^2 + \lambda\|C\|_F^2 + \langle \Delta, Z - C \rangle + \frac{\rho}{2}\|Z - C\|_F^2, \quad (2)$$

where Δ is the augmented Lagrangian multiplier and $\rho > 0$ is the penalty parameter. We initialize the variables C_0, Z_0, and Δ_0 to be conformable zero matrices and set $\rho > 0$ with a suitable value. Denote by (C_k, Z_k) and δ_k the optimization variables and the Lagrange multiplier at iteration k ($k = 0, 1, 2, \ldots, K$), respectively. The variables can be updated by taking derivatives of the Lagrangian function (2) w.r.t. the variables C and Z and setting them to be zero.

1. Updating C while fixing Z and Δ:

$$\min_{C} \|X - XC\|_F^2 + \lambda\|C\|_F^2 + \frac{\rho}{2}\|C - (Z_k + \rho^{-1}\Delta_k)\|_F^2. \quad (3)$$

This is a standard least squares regression problem with closed form solution:

$$C_{k+1} = (X^\top X + \frac{2\lambda + \rho}{2}I)^{-1}(X^\top X + \frac{\rho}{2}Z_k + \frac{1}{2}\Delta_k) \quad (4)$$

2. Updating Z while fixing C and Δ:

$$\min_{Z} \|Z - (C_{k+1} - \rho^{-1}\Delta_k)\|_F^2 \quad \text{s.t.} \quad Z \geq 0. \quad (5)$$

The solution of Z is

$$Z_{k+1} = \max(0, C_{k+1} - \rho^{-1}\Delta_k), \quad (6)$$

where the ”max(·)” operator outputs element-wisely the maximal value of the inputs.

3. Updating the Lagrangian multiplier Δ:

$$\Delta_{k+1} = \Delta_k + \rho(Z_{k+1} - C_{k+1}). \quad (7)$$

The above alternative updating steps are repeated until the convergence condition is satisfied or the number of iterations exceeds a preset threshold K. The convergence condition of the ADMM algorithm is: $\|Z_{k+1} - C_{k+1}\|_F \leq \text{Tol}$, $\|C_{k+1} - C_k\|_F \leq \text{Tol}$, and $\|Z_{k+1} - Z_k\|_F \leq \text{Tol}$ are simultaneously satisfied, where $\text{Tol} > 0$ is a small tolerance value. Since the objective function and constraints are all strictly convex, the NLSR model solved by the ADMM algorithm \cite{3} is guaranteed to converge to a global optimal solution.

II. SOLUTION OF THE SLSR MODEL

We solve the SLSR model (Eqn. (21) in the main paper) by employing variable splitting methods \cite{1}, \cite{2}. Specifically, we introduce an auxiliary variable Z into the SLSR model, which can then be equivalently reformulated as a linear equality-constrained problem:

$$\min_{C, Z} \|X - XC\|_F^2 + \lambda\|Z\|_F^2 \quad \text{s.t.} \quad 1^\top Z = s1^\top, Z = C, \quad (8)$$

whose solution for C coincides with the solution of Eqn. (20) in the main paper. Since its objective function is separable w.r.t. the variables C and Z, problem (8) can also be solved via the ADMM method \cite{3}. The corresponding augmented Lagrangian function is the same as in Eqn. (11) in the main paper. Denote by (C_k, Z_k) and Δ_k the optimization variables and Lagrange multiplier at iteration k ($k = 0, 1, 2, \ldots, K$), respectively. We initialize the variables C_0, Z_0, and Δ_0 to be conformable zero matrices. By taking derivatives of the Lagrangian function L (Eqn. (11) in the main paper) w.r.t. C and Z, and setting them to be zeros, we can alternatively update the variables as follows:

Corresponding author: Jun Xu (email: nankaimathxujun@gmail.com).
Algorithm 4: Projection of the vector \(v_{k+1} \) onto a scaled affine space

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Sort (v_{k+1}) into (w: w_1 \geq w_2 \geq \ldots \geq w_N);</td>
</tr>
<tr>
<td>2.</td>
<td>Find (\alpha = \max{1 \leq j \leq N : w_j + \frac{1}{\alpha}(s - \sum_{i=1}^N w_i) > 0});</td>
</tr>
<tr>
<td>3.</td>
<td>Define (\beta = \frac{1}{\alpha}(s - \sum_{i=1}^N w_i));</td>
</tr>
</tbody>
</table>

Output: \(z_{k+1} = v_{k+1} + \beta, i = 1, \ldots, N \).

(1) Updating \(C \) while fixing \(Z_k \) and \(\Delta_k \):

\[
C_{k+1} = \arg \min_C \| X - XC \|_F^2 + \frac{\rho}{2} \| C - (Z_k + \frac{1}{\rho} \Delta_k) \|_F^2.
\]

This is a standard least square regression problem and has a closed-from solution given by

\[
C_{k+1} = (X^\top X + \frac{\rho}{2} I)^{-1}(X^\top X + \frac{\rho}{2} Z_k + \frac{1}{2} \Delta_k).
\]

(2) Updating \(Z \) while fixing \(C_k \) and \(\Delta_k \):

\[
Z_{k+1} = \arg \min_Z \| Z - \frac{\rho}{2\lambda + \rho}(C_{k+1} - \rho^{-1} \Delta_k) \|_F^2
\]

s.t. \(1^\top Z = s1^\top \).

This is a quadratic programming problem and the objective function is strictly convex, with a close and convex constraint, so there is a unique solution. Here, we employ the projection based method [4], whose computational complexity is \(O(N \log N) \) to process a vector of length \(N \). Denote by \(v_{k+1} \) an arbitrary column of \(\frac{\rho}{2\lambda + \rho}(C_{k+1} - \rho^{-1} \Delta_k) \), the solution of \(z_{k+1} \) (the corresponding column in \(Z_{k+1} \)) can be solved by projecting \(v_{k+1} \) onto a scaled affine space [4]. The solution of problem (11) is summarized in Algorithm 4.

(3) Updating \(\Delta \) while fixing \(C_k \) and \(Z_k \):

\[
\Delta_{k+1} = \Delta_k + \rho(Z_{k+1} - C_{k+1}).
\]

We repeat the above alternative updates until a certain convergence condition is satisfied or the number of iterations reaches a preset threshold \(K \). The convergence condition of the ADMM algorithm is met when \(\| C_{k+1} - Z_{k+1} \|_F \leq \text{Tol} \), \(\| C_{k+1} - C_k \|_F \leq \text{Tol} \), and \(\| Z_{k+1} - Z_k \|_F \leq \text{Tol} \) are simultaneously satisfied, where \(\text{Tol} > 0 \) is a small tolerance value. Since the objective function and constraints are convex, the SLSR model solved by the ADMM algorithm, is guaranteed to converge to a global optimal solution.

REFERENCES

