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I. SOLUTION OF THE NLSR MODEL

The NLSR model (Eqn. (20) in the main paper) does not
have an analytical solution. We employ a variable splitting
method [1], [2] to solve it. By introducing an auxiliary variable
Z, we can reformulate the NLSR model into a linear equality-
constraint problem with two variables C and Z:

min
C,Z
‖X −XC‖2F + λ‖C‖2F s.t. Z = C,Z ≥ 0. (1)

Since the objective function is separable w.r.t. the variables
C and Z, problem (1) can be solved under the alternating
direction method of multipliers (ADMM) [3] framework. The
Lagrangian function of the problem (1) is

L(C,Z,∆, λ, ρ) =‖X −XC‖2F + λ‖C‖2F
+ 〈∆,Z −C〉+

ρ

2
‖Z −C‖2F ,

(2)

where ∆ is the augmented Lagrangian multiplier and ρ > 0
is the penalty parameter. We initialize the vector variables
C0, Z0, and ∆0 to be conformable zero matrices and set
ρ > 0 with a suitable value. Denote by (Ck, Zk) and δk the
optimization variables and the Lagrange multiplier at iteration
k (k = 0, 1, 2, ...,K), respectively. The variables can be
updated by taking derivatives of the Lagrangian function (2)
w.r.t. the variables C and Z and setting them to be zero.
(1) Updating C while fixing Z and ∆:

min
C
‖X −XC‖2F + λ‖C‖2F +

ρ

2
‖C − (Zk + ρ−1∆k)‖2F .

(3)

This is a standard least squares regression problem with closed
form solution:

Ck+1 = (X>X +
2λ+ ρ

2
I)−1(X>X +

ρ

2
Zk +

1

2
∆k)

(4)

(2) Updating Z while fixing C and ∆:

min
Z
‖Z − (Ck+1 − ρ−1∆k)‖2F s.t. Z ≥ 0. (5)
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The solution of Z is

Zk+1 = max(0,Ck+1 − ρ−1∆k), (6)

where the “max(·)” operator outputs element-wisely the max-
imal value of the inputs.
(3) Updating the Lagrangian multiplier ∆:

∆k+1 = ∆k + ρ(Zk+1 −Ck+1). (7)

The above alternative updating steps are repeated until the
convergence condition is satisfied or the number of iterations
exceeds a preset threshold K. The convergence condition of
the ADMM algorithm is: ‖Zk+1 −Ck+1‖F ≤ Tol, ‖Ck+1 −
Ck‖F ≤ Tol, and ‖Zk+1 − Zk‖F ≤ Tol are simultaneously
satisfied, where Tol > 0 is a small tolerance value. Since
the objective function and constraints are all strictly convex,
the NLSR model solved by the ADMM algorithm [3] is
guaranteed to converge to a global optimal solution.

II. SOLUTION OF THE SLSR MODEL

We solve the SLSR model (Eqn. (21) in the main paper) by
employing variable splitting methods [1], [2]. Specifically, we
introduce an auxiliary variable Z into the SLSR model, which
can then be equivalently reformulated as a linear equality-
constrained problem:

min
C,Z
‖X −XC‖2F + λ‖Z‖2F

s.t. 1>Z = s1>,Z = C,
(8)

whose solution for C coincides with the solution of Eqn. (20)
in the main paper. Since its objective function is separable
w.r.t. the variables C and Z, problem (8) can also be solved
via the ADMM method [3]. The corresponding augmented La-
grangian function is the same as in Eqn. (11) in the main paper.
Denote by (Ck,Zk) and ∆k the optimization variables and
Lagrange multiplier at iteration k (k = 0, 1, 2, ...), respectively.
We initialize the variables C0, Z0, and ∆0 to be conformable
zero matrices. By taking derivatives of the Lagrangian function
L (Eqn. (11) in the main paper) w.r.t. C and Z, and setting
them to be zeros, we can alternatively update the variables as
follows:
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Algorithm 4: Projection of the vector vk+1 onto a scaled affine space
Input: Data point vk+1 ∈ RN , scalar s.
1. Sort vk+1 into w: w1 ≥ w2 ≥ ... ≥ wN ;
2. Find α = max{1 ≤ j ≤ N : wj +

1
j
(s−

∑j
i=1 wi) > 0};

3. Define β = 1
α
(s−

∑α
i=1 wi);

Output: zk+1: zik+1 = vik+1 + β, i = 1, ..., N .

(1) Updating C while fixing Zk and ∆k:

Ck+1 = arg min
C
‖X −XC‖2F +

ρ

2
‖C − (Zk +

1

ρ
∆k)‖2F .

(9)

This is a standard least square regression problem and has a
closed-from solution given by

Ck+1 = (X>X +
ρ

2
I)−1(X>X +

ρ

2
Zk +

1

2
∆k). (10)

(2) Updating Z while fixing Ck and ∆k:

Zk+1 = arg min
Z
‖Z − ρ

2λ+ ρ
(Ck+1 − ρ−1∆k)‖2F

s.t. 1>Z = s1>.
(11)

This is a quadratic programming problem and the objective
function is strictly convex, with a close and convex constraint,
so there is a unique solution. Here, we employ the projec-
tion based method [4], whose computational complexity is
O(N logN) to process a vector of length N . Denote by vk+1

an arbitrary column of ρ
2λ+ρ (Ck+1− ρ−1∆k), the solution of

zk+1 (the corresponding column in Zk+1) can be solved by
projecting vk+1 onto a scaled affine space [4]. The solution
of problem (11) is summarized in Algorithm 4.
(3) Updating ∆ while fixing Ck and Zk:

∆k+1 = ∆k + ρ(Zk+1 −Ck+1). (12)

We repeat the above alternative updates until a certain
convergence condition is satisfied or the number of iterations
reaches a preset threshold K. The convergence condition of
the ADMM algorithm is met when ‖Ck+1 −Zk+1‖F ≤ Tol,
‖Ck+1 −Ck‖F ≤ Tol, and ‖Zk+1 −Zk‖F ≤ Tol are simul-
taneously satisfied, where Tol > 0 is a small tolerance value.
Since the objective function and constraints are convex, the
SLSR model solved by the ADMM algorithm, is guaranteed
to converge to a global optimal solution.
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