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Pixel-level Non-local Image Smoothing with
Objective Evaluation

Zhi-Ang Liu, Ying-Kun Hou, Xian-Tong Zhen, Jun Xu, Ling Shao, Ming-Ming Cheng

Abstract—Recently, image smoothing has gained increasing
attention due to its prerequisite role in other image process-
ing tasks, e.g., image enhancement and editing. However, the
evaluation of image smoothing algorithms is usually performed
by subjective observation on images without corresponding
ground truths. To promote the development of image smoothing
algorithms, in this paper, we construct a novel Nankai Smooth-
ing (NKS) dataset containing 200 images blended by versatile
structure images and natural textures. The structure images are
inherently smooth and naturally taken as ground truths. On
our NKS dataset, we comprehensively evaluate 14 popular image
smoothing algorithms. Moreover, we propose a Pixel-level Non-
Local Smoothing (PNLS) method to well preserve the structure
of the smoothed images, by exploiting the pixel-level non-local
self-similarity prior of natural images. Extensive experiments
on several benchmark datasets demonstrate that our PNLS
outperforms previous algorithms on the image smoothing task.
Ablation studies also reveal the work mechanism of our PNLS on
image smoothing. To further show its effectiveness, we apply our
PNLS on several applications such as semantic region smoothing,
detail/edge enhancement, and image abstraction. The dataset and
code are available at https://github.com/zal0302/PNLS.

Index Terms—Image smoothing, benchmark dataset, perfor-
mance evaluation, pixel-level non-local self similarity.

I. INTRODUCTION

IMAGE smoothing is an important multimedia technology,
aiming to decompose an image into a piece-wise smooth

layer and a texture layer [11]. The smooth layer reflects the
structural content of the image, while the texture layer presents
the residual details in the image. The decomposed layers can
be manipulated separately and recomposed in different ways
to fulfill specific applications such as image enhancement [19],
[42] and image abstraction [5], [51].

In the last decade, numerous image smoothing algorithms
have been proposed from the perspectives of local filters [28],
[31], [34], global filters [30], [52], [55], and deep filters [18],
[24], [50], etc. Local filters smooth the input image by aver-
aging pixel intensity in locally weighted manners [16], [31],
[34]. They are computationally efficient, but produce gradient
reversals and halo artifacts especially on edges [16]. Global
filters [11], [52], [55] attenuate the reversals and artifacts by
implementing optimization on the whole image in a principled
manner. However, the global filters are usually time and
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Fig. 1. Examples of our Nankai Smoothing (NKS) dataset.

memory consuming [56]. Deep filters [18], [24], [50] train
smoothing networks with pairs of natural and “ground-truth”
images. But the “ground-truth” images are usually generated
by other image smoothing methods [49], [56], hindering the
deep filters from domain generalized performance.

Despite their promising performance, these image smooth-
ing algorithms could hardly be objectively evaluated due to
the lack of reasonable benchmarks. Although several datasets
are collected for the image smoothing task [27], [49], [56],
their “ground truths” are either generated by other image
smoothing methods [49], [56] or blended with cartoon images
and synthetic textures [27]. On one hand, the “ground truths”
generated by existing smoothing methods are highly biased.
Thai is, the metric results computed on “ground truths”
do not reflect the smoothing performance of the smoothing
method, but the closeness of its results to the “ground truths”
generated by several smoothing methods. On the other hand,
the algorithms trained on cartoon images and synthetic textures
could not perform consistently well on smoothing out natural
textures distinct from the training data.

To promote the development of image smoothing algo-
rithms, in this work, we construct a novel Nankai Smoothing
(NKS) dataset with 200 versatile images blended by structure
images (ground truths) and natural textures. Some examples
of our NKS dataset are illustrated in Figure 1. On our
NKS dataset, we benchmark 14 popular image smoothing
algorithms, and present an extensive performance analysis with
commonly used metrics. Furthermore, we propose a Pixel-
level Non-Local Smoothing (PNLS) method, based on the
pixel-level non-local self similarity (NSS) prior of natural
images [17]. Extensive experiments on several benchmark
datasets (including our NKS) demonstrate that our PNLS
achieves better performance on subjective visual quality (and
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objective metrics) than previous image smoothing methods.
To show its broad practicality, we apply our PNLS onto
three image processing tasks: salient region smoothing, image
detail/edge enhancement, and image abstraction, etc.

In summary, our major contributions are manifold:
• We construct a Nankai Smoothing (NKS) dataset con-

taining 200 images blended by structure and texture im-
ages. The structure images are naturally taken as ground
truths for evaluating image smoothing methods. We also
benchmark 14 popular image smoothing algorithms on
our NKS dataset.

• We propose a novel Pixel-level Non-Local Smoothing
(PNLS) method by exploiting the pixel-level non-local
self similarity (NSS) prior of natural images.

• Experiments shows that our PNLS achieves promising
image smoothing performance on several benchmark
datasets, via subjective evaluation and objective metrics.
We also show the broad practicality of our PNLS by
applying it on diverse image processing tasks.

The remainder of this paper is organized as follows. In
§II, we review the related work. In §III, we introduce the
Nankai Smoothing (NKS) dataset, and benchmark 14 popular
image smoothing algorithms on it. We then present our PNLS
smoothing method in §IV. In §V, we perform extensive exper-
iments on several datasets to demonstrate the advantages of
our PNLS over previous smoothing methods. We also provide
more applications of our PNLS on several image processing
tasks in §VI. The Conclusion is given in §VII.

II. RELATED WORK

A. Image Smoothing Methods

Local filters explicitly filter each pixel as a weighted average
of its neighborhood pixels in an one-step or iterative way.
Bilateral filter (BF) [28] is a simple and intuitive method in
this category, and widely applied in other image processing
tasks [13], [21], [41]. However, since not all pixels have
enough similar pixels around, the weighted average would
be biased by outlier pixels, thus resulting gradient reversal
artifacts [16]. It is also generalized to Joint Bilateral Filter
(JBF) [31], in which the weights are computed upon another
guidance image instead of the input image itself. The insights
of resorting to a guidance image is later flourished in the
Guided Filter (GF) [16]. GF has inspired numerous methods
due to its O(N) complexity for an image with N pixels.
However, it cannot resolve the ambiguity regarding whether
or not to smooth certain edges. With the help of `0 gradient
minimization [49] for correction, Su et al. [34] uses a degrada-
tion scheme to smooth small-scale textures and a joint bilateral
filter for suppressing textures.

Global filters [11], [49], [51] attenuate the limitations of local
filters such as gradient reversals and halo artifacts [11]. These
methods solve an optimization function in a principled manner
on the whole image. The function is usually consisted of a
fidelity term for data fitting and a prior term for regularizing
smoothness. Among these methods, Weighted Least Square
(WLS) [11] adjusts the matrix affinities according to the image

gradient and produces halo-free smoothing results. Later, a
semi-global extension of WLS [25] is proposed to solve the
linear system in a time and memory efficient manner. The `0
gradient minimization (L0) [49] globally controls the number
of non-zero gradients which are involved in approximating the
prominent structure of input image. However, one unavoidable
problem is that they are prone to over-sharpen the edges while
smoothing the details [11], [25], [49]. The Rolling Guidance
Filtering (RGF) [54] filters images with the complete control
of detail smoothing under a scale measure, employing BF for
filtering with a rolling guidance implemented in an iterative
manner. Zhou et al. [55] proposed an iterative optimization
filter to selectively suppress the gradient on the features of
smaller scales, while retaining the large-scale intensity varia-
tions in limited iterations. In short, global filters are usually
computationally expensive, and often sacrifice the local edge-
preserving effects for better global performance.

Deep filters mostly focus on accelerating while approximat-
ing state-of-the-art local or global filters such as BF [28]
or WLS [11]. Deep Edge-Aware Filter (DEAF) [50] is a
pioneering work in this category. It trains the network in
the gradient domain, and reconstructs the filtered output from
the refined gradients produced by the deep network. In [24],
a hybrid neural network is proposed based on the recursive
filters whose coefficients can be learned by a deep network.
Li et al. [18] proposed a learning-based approach to con-
struct a joint filter based on convolutional neural networks
(CNNs). Shen et al. [33] introduces a convolutional neural
pyramid to extract features of different scales, aiming at
extracting larger receptive fields from input images. The work
of [5] utilizes context aggregation networks to include more
contextual information. Lu et al. [27] developed a structure
and texture dataset and trained a texture and structure aware
network, hence enabling their method the awareness. The
work of [10] introduces an unsupervised learning CNN that
facilitates generating flexible smoothing effects. One common
issue is that all these approaches take the output of existing
filters as “ground-truth”, and hence can hardly outperform
these “teacher” filters.

B. Image Smoothing Benchmarks

Datasets. There are several datasets of BSDS500 [29],
DIV2K [1], MIT5K [3] originally collected for the image
segmentation [40], super-resolution [20], and image denois-
ing [32] tasks, but are also used to present image smoothing
performance. But these images do not have corresponding
smooth ground-truths. A dataset is published with the pro-
posed image smoothing algorithm RTV [51], but similarly
this dataset does not provide ground-truths. Zhu et al. [56]
proposed a benchmark for image smoothing. Unfortunately,
the ground-truth smoothed images are generated by existing
smoothing algorithms. These “ground-truths” are prone to be
subjective since in fact we could only evaluate the performance
difference between a new algorithms and these handpicked
existing algorithms. In our Nankai Smoothing (NKS) dataset,
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Fig. 2. The 20 structure images we used in our NKS dataset.

Fig. 3. The 10 natural texture images we used in our NKS dataset.

we collect the structure images as ground-truths and acquire
samples by blending images.

Evaluation metrics. There are many meaningful evaluation
metrics for image quality measurement. Peak-Signal-to-Noise-
Ratio (PSNR) is an widely used objective metric in image
restoration tasks, computing the error between the original
image and the distorted image. However, PSNR focuses on
the pixel-level difference between two images, while ignoring
their similarity of visual characteristics [39]. To fill in this gap,
the Structural Similarity index (SSIM) [39] was developed to
comprehensively measure image similarity from the aspects of
brightness, contrast and structure. SSIM takes into account the
correlation of structural patches instead of pixels, and hence
is more in line with human eye’s judgment on image quality.
Since not all pixels in an image are of the same importance, the

Feature Similarity index (FSIM) [53] uses low-level features
to evaluate the distance between the reference image and the
distorted image. One common evaluation manner is to sub-
jectively evaluate the smoothed image through visual quality,
but this manner may lack accurate measurements. Although
Weighted Root Mean Squared Error (RMSE) and Weighted
Mean Absolute Error (WMAE) are used in [56], they may be
stuck by the “ground truths” produced by existing smoothing
methods. In this paper, we employ PSNR, SSIM [39] and
FSIM [53] as the evaluation metrics due to their consistent
performance with the visual perception of humans.

III. PROPOSED NANKAI SMOOTHING DATASET

In this section, we develop a Nankai Smoothing (NKS)
dataset for the image smoothing task, and evaluate 14 state-
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of-the-art algorithms on it with three commonly used metrics,
i.e., PSNR, SSIM [39], and FSIM [53].

A. Constructing the NKS Image Smoothing Dataset

Motivation. Since manually annotating the structure of an
image is subjective and costly, extracting structural ground
truths directly from natural images is difficult. In fact, image
smoothing is very close to the image denoising task [22],
[23], [37]: both aim to filter out small scale components
(textures or noise) from the image. Despite the collection
of ground truths is ambiguous for image smoothing [27],
[56], constructing image denoising datasets [36], [44], [45] is
explicitly feasible. That is, we add the noise to the clean image,
and recover it from the synthetic noisy image by removing the
noise [43], [46]–[48]. In evaluation, the corresponding clean
images are naturally taken as the ground truths to compute the
objective metrics such as PSNR and SSIM [39]. Similarly, in
image smoothing we can blend structure and texture images
to generate the test images, and the structure images can be
recovered by removing the texture from the blended image.

Though previous work [27] had worked towards this direc-
tion, it suffers from two limitations: 1) the synthetic textures
are not natural as real-world color images; 2) the dataset is
not publicly released, making it difficult for others to evaluate
novel smoothing methods on this dataset.

Collecting structure and texture images. As shown in
Figure 2, we observe that vector images are smooth and can
be reasonably taken as structure images, and construct the
NKS dataset by blending vector images and texture images.
Specifically, we search the key word of “vector” on the
Pixabay website [7] and select 20 highly realistic vector
images from thousands of free structure ones. In addition, we
manually select 10 natural texture images from the Pixabay
website [7]. The selected structure images and natural textures
are shown in Figures 2 and 3, respectively. We observe that
the vector images are smooth with clear structures, and thus
can be taken as ground truths in image smoothing.

Generating blended images. To generate mixed structure and
texture images, we blend each of the 20 structure images
and each of the 10 natural textures in proper proportions.We
set the proportion of structure images from 0.7 to 0.85 for
ensuring every fused image is real enough. This process is
closely similar to the generation of noisy images in image
denoising [43], [48], except that we need to set proper pro-
portions of structure and texture images to make the mixed
image natural in visual quality. The reason is that, directly
adding the structure and texture images together would result
in overflow of pixel values, as well as unnatural looking of
mixed images. The structure images are taken as the ground
truths for the corresponding images blended by the structure
images and the 10 natural textures. In this way, we collect
overall 20 × 10 = 200 images in our NKS dataset, with 20
structure images as the ground-truths.

Dataset statistics. Our NKS dataset contains 200 images of
versatile scenarios. We show the structure and texture images

TABLE I
SUMMARY OF OUR NKS SMOOTHING DATASET.

Class Size Number Structures TexturesWidth Height
Human 512 340 ∼ 384 70

Carpet,
Wood,...

Artifact 512 343 ∼ 397 50 VectorLandscape 512 298 ∼ 384 60
Animal 512 277 ∼ 384 20

in Figures 2 and 3, from which one can see that our NKS
dataset consists of diverse contents, such as Human (e.g., chil-
dren, women,... ), Artifact (e.g., pot, chalk,...), Landscape (e.g.,
forest, beach,...), and Animal (e.g., cat, insect,...), etc. We also
present the statistics of our NKS dataset in Table I. All images
are resized into the width of 512 with proportionally heights,
by the default Matlab function “imresize”. The numbers of
different classes are 70 for Human, 50 for Artifact, 60 for
Landscape, and 20 for Animal.

TABLE II
COMPARISON OF AVERAGE PSNR, SSIM [39], AND FSIM [53] BY 14

STATE-OF-THE-ART IMAGE SMOOTHING ALGORITHMS ON OUR NKS
DATASET. THE AVERAGE RUNNING TIME (IN SECONDS) OF THESE

METHODS (ON CPU OR GPU ) IS REPORTED ON THE 110 IMAGES OF SIZE
512× 384 IN OUR NKS DATASET. OUR METHOD WILL BE INTRODUCED IN

§IV. “PUB.” MEANS “PUBLICATION VENUES”.

No. Method PSNR SSIM FSIM Device Time

Tr
ad

iti
on

al
Fi

lte
rs

1 BF [28]ICCV ′98 32.00 0.8478 0.8556 CPU 1.53

2 WLS [11]TOG′08 28.59 0.9011 0.9107 CPU 0.91

3 EAW [12]TOG′09 28.02 0.7953 0.8200 CPU 0.02

4 L0 [49]TOG′11 33.01 0.9249 0.9374 CPU 0.48

5 RTV [51]TOG′12 31.81 0.9206 0.9234 CPU 0.68

6 GF [16]TPAMI′13 32.09 0.8779 0.8672 CPU 0.03

7 TF [2]TIP ′13 33.23 0.9186 0.9149 CPU 0.33

8 FGS [30]TIP ′14 23.46 0.8368 0.7978 CPU 0.03

9 RGF [54]ECCV ′14 32.51 0.9135 0.9128 CPU 0.22

10 fastABF [14]TIP ′18 31.44 0.8977 0.8917 CPU 0.37

D
ee

p
Fi

lte
rs 11 LRNN [24]ECCV ′16 30.61 0.8666 0.8600 CPU 0.43

12 FIP [5]ICCV ′17 32.03 0.8946 0.9061 GPU 0.45

13 VDCNN [56]TIP ′19 33.38 0.9349 0.9395 GPU 1.47

14 ResNet [56]TIP ′19 33.13 0.9354 0.9434 GPU 3.76

O
ur

s 15 PNLS (Fast) 33.45 0.9378 0.9397 CPU 5.10

16 PNLS (Slow) 33.68 0.9420 0.9440 CPU 78.68

B. Benchmarking Image Smoothing on our NKS dataset

Comparison methods. We evaluate 14 image smoothing
algorithms on NKS dataset in total. These algorithms include
10 traditional filters: BF [28], WLS [11], EAW [12], GF [16],
L0 [49], RTV [51], TF [2], FGS [30], RGF [54], fastABF [14]
and 4 deep filters: LRNN [24], FIP [5], two baselines ResNet
and VDCNN used in [56]. We employ the commonly used
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Input Image

Patch Matching

Patch Vectorization

Similar Patches Matrix

Row Matching

Similar Pixels Matrix

Transformed Representation Matrix

Thresholded Representation Matrix

Smoothed Similar Pixels Matrix

Haar Transformation

Thresholding

Inverse Haar Transformation

Smoothed Image

Aggregation

Fig. 4. Flowchart of our PNLS smoothing method. First, we select multiple
reference patches for smoothing in the input image. For a separate reference
patch (shown in the red bounding box), the Euclidean distance is used to
perform patch matching and row matching to obtain the Similar Pixels Matrix.
Then, the three channels of the Similar Pixels Matrix are transformed by
using the Haar transformation, and the threshold is used for smoothing. Then
the Thresholded Representation Matrices of the three channels are to inverse
Haar transformation to obtain the Smoothed Similar Pixels Matrix. Finally,
we aggregate it back into the image to complete the smoothing process of
a single reference patch. The above process is performed for all selected
reference patches to complete one iteration of image smoothing. We perform
our PNLS several iterations to improve its performance.

metrics of PSNR, SSIM [39], and FSIM [53] to quantitatively
evaluate the performance of the comparison methods on our
NKS dataset. These metrics measure the distance between the
smoothed images and the corresponding ground-truths.

Results. The comparison results are listed in Table II. One can
see that, on the three metrics, TF [2] performs best among
the traditional (local and global) filters, while the baselines
VDCNN and ResNet in [56] performs better than the other
two deep filters. We also report the average running time (in
seconds) of different methods on the 110 images of size 512×
384 in our NKS dataset. Specifically, FIP [5], two baselines
ResNet and VDCNN used in [56] are tested on an NVIDIA
GTX 1080 GPU and the other filters are tested on the Intel
Core i7-6700K CPU. One can see that EAW [12], GF [16]
and FGS [30] averagely take 0.02, 0.03, and 0.03 seconds to
process a 512× 384 image, much faster than the other filters.

IV. PROPOSED PIXEL-LEVEL NON-LOCAL SMOOTHING

In this section, we present the proposed Pixel-level Non-
Local Smoothing (PNLS) method, which is consisted of three
steps: 1) searching non-local similar pixels (§IV-A); 2) esti-
mating the smoothing threshold (§IV-B); and 3) smoothing by
Haar transformation based thresholding (§IV-C). The flowchart
of our PNLS is plotted in Figure 4. Note that we first transform
an RGB image into the luminance-chrominance space [8],
and get the corresponding YCbCr image. We search similar
pixels and estimate the smoothing threshold in the Y channel.
The similar pixels of the Cb and Cr channels are grouped
according to results in the Y channel. Then, we perform image
smoothing by threshold based Haar transformation on each
channel. Finally, we transform the smoothed image in YCbCr
space back to the RGB space.

Similar Texture Patches (0.51)                Similar Texture Pixels (0.03)

Similar Structure Patches (0.53)              Similar Structure Pixels (0.13)

Fig. 5. Importance of pixel-level smoothing. The standard deviation (std)
of similar patches belonging to the texture (0.51) and that of similar patches
belonging to the structure (0.53) are very close. But the std of similar pixels
in texture (0.03) is much smaller than that of similar pixels in structure area
(0.13). Therefore pixel-level smoothing could well distinguish texture and
structure area in a mixed image.

A. Searching Non-local Similar Pixels

For the input image I ∈ Rh×w, we extract reference patches
of size m ×m with a step of s (horizontally and vertically)
from its Y channel. For each reference patch, we first search
its similar patches in a window of size R×R. The similarity
is measured by Euclidean distance. Then we reshape each
similar patch into a vector vr ∈ Rm2

(r = 1, ..., R2, v1 is
the reference patch). We perform patch matching by selecting
the q closest patches (including v1 itself) to v1. By stacking
the q vectors in columns, we get the similar patches matrix
P = [v1, ...,vq] ∈ Rm2×q .

However, patch matching could not well distinguish textures
from structures. To illustrate this point, in Figure 5, we extract
similar texture patches of size 9 × 9 from the texture area
(green boxes) and the structure area (red boxes), respectively.
The standard deviation (std) of similar patches in texture area
and that of similar patches in structure area are very close, i.e.,
0.51 and 0.53, respectively. To better distinguish structure and
texture area, we propose to perform pixel-level row matching
to extract similar pixels. We extract 4 similar pixel groups
by row matching, as described in Figure 4, to form similar
pixel matrix of size 4 × 8 from similar texture and structure
patches, respectively. Figure 5 shows that the std of similar
pixel groups in texture area (0.03) is much smaller than the
std of similar pixel groups in structure area (0.13), indicating
that pixel-level similarity well distinguishes the texture area
from structure one. We will set a smoothing threshold to help
smooth images accurately, which will be introduced in §IV-B.

For row matching of similar pixel groups, we take the i-th
row vi ∈ Rq (i = 1, ...,m2) of P as the reference row, and
calculate the Euclidean distances between the reference row
vi and the other rows {vj ∈ Rq , j = 1, ...,m2}, as follows:

dij = ‖vi − vj‖2. (1)

We select the p rows of pixels with the minimal distances
to the reference row vi, and form the similar pixels matrix
S = [vi1 , ...,viq ] ∈ Rp×q . Note that we have vi1 = vi and
dii1 = 0. The similar pixels matrices in Cb and Cr channels
of the matrix P are extracted corresponding to the Y channel.

B. Estimation of Smoothing Threshold

As shown in Figure 5, pixels in similar patches of the
structure in image would suffer from larger stds than those
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(a) Ground Truth (b) Input Image
27.26/0.4367/0.6491

(c) FIP [5]
32.74/0.8250/0.9037

(d) L0 [49]
35.00/0.8861/0.9540

(e) RGF [54]
34.45/0.8914/0.9097

(f) TF [2]
35.47/0.9104/0.9195

(g) RTV [51]
33.67/0.9112/0.9611

(h) ResNet [56]
34.03/0.8989/0.9704

(i) VDCNN [56]
34.90/0.9110/0.9671

(j) Ours
36.90/0.9309/0.9803

Fig. 6. Comparison of smoothed images and PSNR(dB)/SSIM/FSIM results by different methods on the image “S15 T01” from our NKS dataset. The best
results are highlighted in bold.

in the texture area. Then a threshold is essential to determine
whether or not (and the extent to which) smooth each similar
pixels matrix for distinguishing structure and texture. Since
the pixels in the p rows of S are very close, we can consider
the std as the energy estimation due to texture changes and
compute it as

σ =
1

m2(p− 1)
√
q

p∑
t=2

m2∑
i=1

diit . (2)

To perform consistent image smoothing, we set a global
threshold as the average σ of all similar pixels matrices.

C. Smoothing by Haar Transformation based Thresholding

In §IV-A, we have obtained a set of similar pixels ma-
trices S ∈ Rp×q and the threshold σ. We then employ
the Haar transformation [15] for thresholding similar pixels
matrices. Specifically, we utilize the Haar transformation with
lifting scheme [9], [35], which includes vertical transformation
matrix Hl ∈ Rp×p and horizontal transformation matrix
Hr ∈ Rq×q . In order to perform Haar transformation, we set
p, q to be powers of 2. The detailed transformation process
is provided in the Supplementary File. Thus, we get the
transformed representation matrix T ∈ Rp×q:

T = HlSHr. (3)

By using the smoothing threshold, we could restore the
element in i-th (i = 1, ..., q) row, j-th (j = 1, ...,m2) column
of the transformed representation matrix S via

T̂ = T � I{|T |≥λσ2}, (4)

where � means element-wise production, I is the indicator
function, and λ is the parameter controlling the extent to
threshold. According to the wavelet theory [35], the elements
in the last two rows of T (except the 1-st column) belongs
to high frequency bands of the Haar transformation, and
these elements are texture information. We directly set these
elements as zero in T̂ :

T̃ (i, j) = T̂ (i, j)� I{if i=1,...,q−2 or j=1}, (5)

where T̃ (i, j) and T̂ (i, j) are the elements in i-th (i = 1, ..., q)
row, j-th (j = 1, ...,m) column of matrices T̃ and T̂ , respec-
tively. We then use the vertical inverse Haar transformation
matrix Hil ∈ Rp×p and horizontal inverse Haar transformation
matrix Hir ∈ Rq×q on thresholded representation matrix T̃ .
The detailed inverse transformation process is also provided
in the Supplementary File. Then we could get the smoothed
similar pixels matrix S̃ without texture via

S̃ = HilT̃Hir. (6)

Finally, the smoothed similar pixels matrices are aggregated to
the corresponding positions in the original image. The above
is the detailed process of image smoothing based on Haar
transformation techniques [15].

D. Iterative Smoothing Scheme

For better performance, we apply the above smoothing
process for N = 10 iterations. Experiments show that our
PNLS method with N = 10 achieves satisfactory smoothing
results (please refer to §V for more details).

E. Complexity Analysis

The proposed PNLS method contains three parts: 1) in
§IV-A, the complexity of patch matching is O(whR2m2/s2),
while the complexity of row matching is O(whqm4/s2); 2)
in §IV-B, the complexity for smoothing threshold estimating
is O(whm2p/s2); 3) in §IV-C, the complexity for Haar
transformation based thresholding is O(whpqm2/s2). Since
the above process iterates N times, the complexity of our
PNLS is O(whm2N/s2 ·max{R2, qm2, pq}).

V. EXPERIMENTS

In this section, we first compare the proposed Pixel-level
Non-Local Smoothing (PNLS) method with competitive meth-
ods on several image smoothing benchmark datasets. We also
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(a) Input Image (b) Ours

(c) L0 [49] (d) RTV [51]

(e) RGF [54] (f) ResNet [56]

(g) VDCNN [56] (h) FIP [5]
Fig. 7. Comparison of smoothed images by different methods on the image
“0261” from the DIV2K dataset [1].

perform comprehensive ablation studies to gain deeper insights
into the proposed PNLS method. More comparison results of
visual quality can be found in the Supplementary File.

A. Implementation Details

Parameter settings. As shown in Table II, we have two
versions of PNLS: fast PNLS (No. 15) and slow PNLS (No.
16). The parameters of our fast PNLS include the size R = 15
of searching window, the step s = 4 for extracting neighbor
reference patches, the patch size m = 4, the iteration number
N = 10, the threshold parameter λ = 0.4. For our slow PNLS,
the parameters are almost the same with those of fast PNLS,
but the step is set as s = 1 (rather than s = 4 in fast PNLS)
to extract more reference patches.

Comparison methods. We compare the proposed PNLS
method with 14 state-of-the-art image smoothing methods:
BF [28], WLS [11], EAW [12], GF [16], L0 [49], RTV [51],
TF [2], FGS [30], RGF [54], fastABF [14], LRNN [24],
FIP [5], the two baselines ResNet and VDCNN in [56]. For
every comparison method, we download its original code from

(a) Input Image (b) Ours

(c) L0 [49] (d) RTV [51]

(e) RGF [54] (f) ResNet [56]

(g) VDCNN [56] (h) FIP [5]
Fig. 8. Comparison of smoothed images by different methods on the image
“0251” from the dataset [56].

the corresponding authors’ website, and perform experiments
with its default parameter settings. The comparisons are eval-
uated on PSNR, SSIM [39], FSIM [53], and visual quality.

Datasets. We evaluate our PNLS with the comparison image
smoothing methods on the DIV2K dataset [1] (1000 high-
resolution RGB images with diverse contents), the images
used in RTV [51], and the Edge-Preserving image Smoothing
(EPS) dataset [56] (500 images). Note that the images in
the DIV2K [1] and RTV [51] datasets do not have corre-
sponding ground truth images, while the ground truths of the
EPS dataset [56] are constructed by manually selecting the
smoothed images generated by seven existing state-of-the-art
image smoothing algorithms.

Evaluation. On the three datasets of [1], [51], [56], we
evaluate the performance of different smoothing methods by
subjectively comparing the visual quality of smoothed images.
On our NKS dataset with structure images as ground truths.
Thus we evaluate the performance of different smoothing
algorithms qualitatively on visual quality, and quantitatively
on PSNR, SSIM [39] and FSIM [53].
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(a) Input Image (b) Ours (c) L0 [49] (d) RTV [51]

(e) RGF [54] (f) ResNet [56] (g) VDCNN [56] (h) FIP [5]
Fig. 9. Comparison of smoothed images by different methods on the image “11 11” from the dataset in [51].

B. Comparison Results

As shown in Table II, the slow version of our PNLS achieves
the best results of PSNR/SSIM/FSIM on the NKS dataset. Our
fast PNLS achieves comparable objective performance when
compared to the slow PNLS. Besides, it greatly improves the
running time, and needs averagely 5.10 seconds to process a
512 × 384 image. In Figures 6, 7, 8, and 9, we compare the
visual results of our PNLS method with the other state-of-
the-art image smoothing methods. We observe that our PNLS
method preserves the structures of the image contents while
smoothing out the textures of the images.

In Figure 9, RTV [51] well erases the textures between the
middle circles, but destroy the structure of the red background
pattern, making it very blurry. The other methods do not even
fully remove the textures betweent the middle circles. Our
PNLS ensures the integrity and sharpness of the background
pattern while well removing the textures. Note that our PNLS
outperforms the deep learning based smoothing networks
in [56], even though they are trained by plenty of images
with “ground truths”. In Figure 6, we compare both the visual
quality (subjective metric) and PSNR/SSIM/FSIM (objective
metrics) results of different image smoothing methods on the
image “S15 T01” (“15” is the index of structure image, while
“01” is the index of texture one).

C. User Study on Our NKS dataset

Though our NKS dataset has ground truths, it is more
convincing to subjectively evaluate the comparison methods
by highly controlled user study, as did by previous work [56].
To perform user study together with our algorithm, we select
seven state-of-the-art methods: L0 [49], RTV [51], RGF [54],
FIP [5], TF [2] and the two baselines ResNet and VDCNN

in [56]. We perform user study with the help of 80 randomly
selected undergraduate and postgraduate students in Nankai
University, and uniformly use our NKS dataset for evaluation.
As shown in the Figure 10, we have given the input image and
the ground truth in every page. What the user needs to do is
only to choose the smoothed image that, in his or her opinion,
is closest to the ground truth (top right image). The voting
results in the Figure 11 show that our PNLS has won the most
choices (206 votes), better than the second one ResNet [56]
(186 votes) and the third one L0 [49] (163 votes).

D. Ablation Study

Here, we conduct deeper examinations on how the pa-
rameters influence our PNLS. All experiments are performed
on our NKS smoothing dataset. Our PNLS has 5 major
parameters, the searching field size R = 15, the step s = 4
of extracting reference patches, the patch size m = 4, the
iteration number N = 10, the threshold λ = 0.4. We study
the individual influence on our PNLS of each parameter while
fixing the others. The PSNR, SSIM [39], and FSIM [53]
results are summarized in Table III. We observe that, by
increasing the searching field size R, the performance of our
PNLS increases because more patches could be matched in
one time. Increasing the step s in our PNLS will decrease
the number of reference patches to be processed, and thus
naturally decrease the quantitative performance of our PNLS
(but also speed up the running time). The smoothing strength
of our PNLS increases with the increase of iteration number
N . Our PNLS is very robust to the changes of parameter m or
λ. Additionally, Table III shows that the iteration number N is
the most sensitive parameter to the performance of our PNLS.
To study how different N influence our PNLS, in Figure 12,
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Fig. 10. Interface of the system used in our user study experiments. Each user has 12 rounds of voting. During each round of voting, the user selects
one of the images smoothed by eight different methods that he/she thinks is closest to the structure image. The user only needs to click the selected image
and then click the next button to proceed to the next round of voting.
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Fig. 11. Histogram of votes by 80 users for different methods.

we compare the visual quality and PSNR/SSIM/FSIM results
by PNLS with different N , on the image “S12 T06” from our
NKS dataset. One can see that our PNLS performs consistently
well with N = 5, 10, 15, 20, demonstrating the robustness of
our PNLS over different numbers of iterations.

VI. APPLICATIONS

We apply the proposed Pixel-level Non-Local Smoothing
(PNLS) method on 4 image processing tasks: semantic region

TABLE III
AVERAGE PSNR (DB), SSIM AND FSIM OF OUR PNLS WITH DIFFERENT
PARAMETERS OVER THE NKS DATASET. WE CHANGE ONE PARAMETER AT

A TIME TO ASSESS ITS INDIVIDUAL INFLUENCE ON OUR PNLS. “↑”
MEANS THAT HIGHER IS BETTER.

R

Value 11 13 15 17 Margin
PSNR↑ 33.30 33.39 33.45 33.48 0.18
SSIM ↑ 0.9358 0.9371 0.9378 0.9379 0.0021
FSIM ↑ 0.9378 0.9392 0.9397 0.9396 0.0019

s

Value 1 2 3 4 Margin
PSNR↑ 33.68 33.65 33.59 33.45 0.23
SSIM ↑ 0.9420 0.9415 0.9403 0.9378 0.0042
FSIM ↑ 0.9440 0.9436 0.9424 0.9397 0.0043

m

Value 4 5 6 7 Margin
PSNR↑ 33.45 33.41 33.32 33.27 0.18
SSIM ↑ 0.9378 0.9391 0.9388 0.9382 0.0013
FSIM ↑ 0.9397 0.9416 0.9413 0.9406 0.0019

N

Value 5 10 15 20 Margin
PSNR↑ 33.31 33.45 33.08 32.68 0.77
SSIM ↑ 0.9206 0.9378 0.9377 0.9355 0.0172
FSIM ↑ 0.9166 0.9397 0.9409 0.9387 0.0243

λ

Value 0.3 0.4 0.5 0.6 Margin
PSNR↑ 33.49 33.45 33.31 33.13 0.36
SSIM ↑ 0.9361 0.9378 0.9378 0.9370 0.0017
FSIM ↑ 0.9365 0.9397 0.9402 0.9396 0.0037

smoothing, image detail enhancement, image edge enhance-
ment, and image abstraction.

Semantic region smoothing is mainly to smooth only the
foreground or background region of an image while leaving the
other region as is. In this task, we first predict the foreground
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(a) Ground Truth (b) Input Image
27.96/0.5277/0.7008

(c) N = 5
34.41/0.9286/0.9224

(d) N = 10
34.51/0.9511/0.9579

(e) N = 15
33.89/0.9469/0.9569

(f) N = 20
33.29/0.9408/0.9505

Fig. 12. Comparison of smoothed images and PSNR(dB)/SSIM/FSIM results by our PNLS with parameter N in different values, on the image “S12 T06”
from our NKS dataset.

(a) Input Image (b) Input Image

(c) Mask (d) Mask

(e) Foreground Smoothing (f) Background Smoothing
Fig. 13. Semantic region smoothing by our PNLS method of two images
from the MSRA-B SOD dataset [38].

mask that separates the foreground and background of the
image, and then smooth the region we are interested in. As
shown in Figure 13, the foreground (upper row) or background
(lower row) is smoothed while the background region is
left as it is. Here, we use the salient ground truths as the
corresponding foreground masks. In practice, we employ the
famous method of [6] to predict the salient region.

Image detail enhancement aims at enhancing the details of
an image while avoiding producing artifacts (gradient reversals
or halos). For the input image, our PNLS decomposes it into
a base layer (the smoothed image) and a detail layer (the
removed textures). Then we enlarge the detail layer by 3 times
while leaving the base layer as it is. The enhanced image is
obtained by adding the enlarged detail layer back to the base
layer. In Figure 14, we present the input images, the smoothed
images by our PNLS, and the enhanced images on the images
“0347” and “0484” from [56]. We observe that the images

(a) Input Image (b) Input Image

(c) Smoothed Image by Our PNLS (d) Smoothed Image by Our PNLS

(e) Enhanced Image (f) Enhanced Image
Fig. 14. Illustration of image detail enhancement implemented by our
PNLS smoothing method.

with enhanced details looks very natural when compared to the
input images. This demonstrates that our PNLS well preserves
the structure of input images while removing the details.

Image edge enhancement. As shown in Figure 15 (b), the
boundary of the horse and the lawn are still very clear when
compared to the input image (Figure 15 (a)). Here, we use a
Laplacian operator and a Canny edge detector [4] to compute
the gradient maps and edge maps of Figures 15 (a) and (b),
respectively. The boundary in the gradient map (c) of the input
image (a) is difficult to distinguish due to the interference
of the textures in the surrounding area. The edge map (e)
extracted by the Canny edge detector [4] is also seriously af-
fected by the texture in (a). As shown in Figures 15 (d) and (f),
our PNLS method smooths out unimportant textures (please
refer to the textures in horse and the lawn in Figure 15 (b)).
Thus, the Laplacian operator and the Canny edge detector [4]
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(a) Input Image (b) Smoothed (a) by Our PNLS

(c) Gradient Map of (a) (d) Gradient Map of (b)

(e) Edge Map of (a) (f) Edge Map of (b)
Fig. 15. Illustration of edge enhancement and extraction results. Our
PNLS smoothing method suppresses the texture details, and strengthen
structural edges of the input image (a).

are enabled to extract clear gradient map (Figure 15 (e)) and
reliable edge map (Figure 15 (f)), respectively, of the smoothed
image (Figure 15 (b)).

Image abstraction. Our PNLS method can also be applied
into the image abstraction task. The visual results are shown in
Figure 16. As suggested by [41], we perform image abstraction
by replacing bilateral filtering [28] with our PNLS, and extract
cartoon-style abstractions (c) and (d) of the input images (a)
and (b), respectively. In addition, we also used the method
of [26] to generate pencil sketching results (e) and (f) of the
abstract images (c) and (d), respectively. One can see that our
PNLS can help obtain promising image abstraction and pencil
sketching results, due to its capability of capturing accurate
structure of images.

VII. CONCLUSION

Despite the progress of algorithms, proper benchmark
datasets in image smoothing community are in urgent re-
quirements. In this paper, we constructed a Nankai Smoothing
(NKS) dataset to affiliate the comparison of image smoothing
algorithms. With our NKS dataset, we benchmark 14 popular
image smoothing algorithms. Besides, we also proposed a
Pixel-level Non-Local Smoothing (PNLS) method, by utilizing
the pixel-level non-local self similarity prior of natural images.
Our PNLS achieved better qualitative and (or) quantitative
performance than the other competing methods on several
benchmark datasets (including our NKS dataset). Extensive

(a) Input Image (b) Input Image

(c) Image Abstraction (d) Image Abstraction

(e) Pencil Sketching (f) Pencil Sketching
Fig. 16. Illustration of image abstraction and pencil sketching results, in
which our PNLS method removes the texture details.

parameter analysis validated the robustness of our PNLS on
image smoothing. We further validated the broad practicality
of the proposed PNLS method on the tasks of semantic region
smoothing, detail/edge enhancement, and image abstraction.

This work can be extended in at least two directions.
First, we can further speed up our PNLS method to fulfill
practical applications. Second, we can construct a larger image
smoothing dataset, consisting of training and test images, to
better benchmark deep learning based smoothing networks.

REFERENCES

[1] E. Agustsson and R. Timofte. Ntire 2017 challenge on single image
super-resolution: Dataset and study. In in Proc. IEEE Conf. Comput.
Vis. Pattern Recog. Worksh., July 2017. 2, 7

[2] L. Bao, Y. Song, Q. Yang, H. Yuan, and G. Wang. Tree filtering: Efficient
structure-preserving smoothing with a minimum spanning tree. IEEE
Trans. Image Process., 23(2):555–569, 2013. 4, 5, 6, 7, 8

[3] V. Bychkovsky, S. Paris, E. Chan, and F. Durand. Learning photographic
global tonal adjustment with a database of input/output image pairs. In
in Proc. IEEE Conf. Comput. Vis. Pattern Recogn., 2011. 2

[4] J. Canny. A computational approach to edge detection. IEEE Trans.
Pattern Anal. Mach. Intell., 8(6):679–698, 1986. 10

[5] Q. Chen, J. Xu, and V. Koltun. Fast image processing with fully-
convolutional networks. In in Proc. IEEE Int. Conf. Comput. Vis., pages
2497–2506, 2017. 1, 2, 4, 5, 6, 7, 8

[6] M.-M. Cheng, N. J. Mitra, X. Huang, P. H. S. Torr, and S.-M. Hu. Global
contrast based salient region detection. IEEE Trans. Pattern Anal. Mach.
Intell., 37(3):569–582, 2015. 10

[7] Clker-Free-Vector-Images. Pixabay. https://pixabay.com/users/
clker-free-vector-images-3736/. Accessed: 2019-11-02. 4

https://pixabay.com/users/clker-free-vector-images-3736/
https://pixabay.com/users/clker-free-vector-images-3736/


12

[8] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Image denoising by
sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image
Process., 16(8):2080–2095, 2007. 5

[9] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting
steps. Journal of Fourier Analysis and Applications, 4(3):247–269, 1998.
6

[10] Q. Fan, J. Yang, D. Wipf, B. Chen, and X. Tong. Image smoothing via
unsupervised learning. ACM Trans. Graph., 37(6), 2018. 2

[11] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski. Edge-preserving
decompositions for multi-scale tone and detail manipulation. ACM
Trans. Graph., 27(3):67, 2008. 1, 2, 4, 7

[12] R. Fattal. Edge-avoiding wavelets and their applications. ACM Trans.
Graph., 28(3):22, 2009. 4, 5, 7

[13] R. Fattal, M. Agrawala, and S. Rusinkiewicz. Multiscale shape and detail
enhancement from multi-light image collections. ACM Trans. Graph.,
26(3), July 2007. 2

[14] R. G. Gavaskar and K. N. Chaudhury. Fast adaptive bilateral filtering.
IEEE Trans. Image Process., 28(2):779–790, 2018. 4, 7

[15] A. Haar. Zur theorie der orthogonalen funktionensysteme. Mathematis-
che Annalen, 69(3):331–371, Sep 1910. 6

[16] K. He, J. Sun, and X. Tang. Guided image filtering. IEEE Trans. Pattern
Anal. Mach. Intell., 35(6):1397–1409, 2013. 1, 2, 4, 5, 7

[17] Y. Hou, J. Xu, M. Liu, G. Liu, L. Liu, F. Zhu, and L. Shao. Nlh: A
blind pixel-level non-local method for real-world image denoising. IEEE
Trans. Image Process., 29:5121–5135, 2020. 1

[18] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep joint image
filtering. In in European Conference on Computer Vision., pages 154–
169, 2016. 1, 2

[19] Z. Liang, J. Xu, D. Zhang, Z. Cao, and L. Zhang. A hybrid l1-l0 layer
decomposition model for tone mapping. In in Proc. IEEE Conf. Comput.
Vis. Pattern Recogn., June 2018. 1

[20] B. Lim, S. Son, H. Kim, S. Nah, and K. Mu Lee. Enhanced deep
residual networks for single image super-resolution. In in Proc. IEEE
Conf. Comput. Vis. Pattern Recog. Worksh., pages 136–144, 2017. 2

[21] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise estimation
from a single image. In in Proc. IEEE Conf. Comput. Vis. Pattern
Recogn., volume 1, pages 901–908, 2006. 2

[22] D. Liu, B. Wen, Y. Fan, C. C. Loy, and T. S. Huang. Non-local recurrent
network for image restoration. In in Proc. Adv. Neural Inform. Process.
Syst., pages 1673–1682, 2018. 4

[23] D. Liu, B. Wen, J. Jiao, X. Liu, Z. Wang, and T. S. Huang. Connecting
image denoising and high-level vision tasks via deep learning. IEEE
Trans. Image Process., 29:3695–3706, 2020. 4

[24] S. Liu, J. Pan, and M.-H. Yang. Learning recursive filters for low-
level vision via a hybrid neural network. In in European Conference on
Computer Vision., pages 560–576, 2016. 1, 2, 4, 7

[25] W. Liu, X. Chen, C. Shen, Z. Liu, and J. Yang. Semi-global weighted
least squares in image filtering. In in Proc. IEEE Int. Conf. Comput.
Vis., pages 5861–5869, 2017. 2

[26] C. Lu, L. Xu, and J. Jia. Combining sketch and tone for pencil drawing
production. In Proceedings of the Symposium on Non-Photorealistic
Animation and Rendering, pages 65–73, 2012. 11

[27] K. Lu, S. You, and N. Barnes. Deep texture and structure aware filtering
network for image smoothing. In in European Conference on Computer
Vision., September 2018. 1, 2, 4

[28] R. Manduchi and C. Tomasi. Bilateral filtering for gray and color images.
In in Proc. IEEE Int. Conf. Comput. Vis., 1998. 1, 2, 4, 7, 11

[29] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human
segmented natural images and its application to evaluating segmentation
algorithms and measuring ecological statistics. In in Proc. IEEE Int.
Conf. Comput. Vis., volume 2, pages 416–423, July 2001. 2

[30] D. Min, S. Choi, J. Lu, B. Ham, K. Sohn, and M. N. Do. Fast global
image smoothing based on weighted least squares. IEEE Trans. Image
Process., 23(12):5638–5653, 2014. 1, 4, 5, 7

[31] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and
K. Toyama. Digital photography with flash and no-flash image pairs.
ACM Trans. Graph., 23(3):664–672, 2004. 1, 2

[32] D. Ren, W. Zuo, D. Zhang, J. Xu, and L. Zhang. Partial deconvolution
with inaccurate blur kernel. IEEE Trans. Image Process., 27(1):511–524,
2018. 2

[33] X. Shen, Y.-C. Chen, X. Tao, and J. Jia. Convolutional neural pyramid
for image processing. arXiv preprint arXiv:1704.02071, 2017. 2

[34] Z. Su, X. Luo, Z. Deng, Y. Liang, and Z. Ji. Edge-preserving
texture suppression filter based on joint filtering schemes. IEEE Trans.
Multimedia, 15(3):535–548, 2013. 1, 2

[35] W. Sweldens. The lifting scheme: A custom-design construction of
biorthogonal wavelets. Applied and Computational Harmonic Analysis,
3(2):186 – 200, 1996. 6

[36] C. Tian, L. Fei, W. Zheng, Y. Xu, W. Zuo, and C.-W. Lin. Deep learning
on image denoising: An overview. arXiv preprint arXiv:1912.13171,

2019. 4
[37] C. Tian, Y. Xu, Z. Li, W. Zuo, L. Fei, and H. Liu. Attention-guided cnn

for image denoising. Neural Networks, 2020. 4
[38] J. Wang, H. Jiang, Z. Yuan, M.-M. Cheng, X. Hu, and N. Zheng. Salient

object detection: A discriminative regional feature integration approach.
Int. J. Comput. Vis., 123(2):251–268, 2017. 10

[39] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity. IEEE
Trans. Image Process., 13(4):600–612, 2004. 3, 4, 5, 7, 8

[40] Z. Wang, J. Xu, L. Liu, F. Zhu, and L. Shao. Ranet: Ranking attention
network for fast video object segmentation. In in Proc. IEEE Int. Conf.
Comput. Vis., Oct 2019. 2
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