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In this supplementary file, we provide:
o detailed Haar transformation and inverse Haar transformation;
« more comparisons of different image smoothing methods on the datasets of NKS, [I1], [6], [9].

I. DETAILED HAAR TRANSFORMATION AND INVERSE HAAR TRANSFORMATION

We perform standard Haar transformation and inverse Haar transformation with no modification. Moreover we set ¢ = 4,
m = 16 in all experiments, so the similar pixels matrix S € R**1¢ could be represented by columns as S = [s}, ..., s34] €
R**16_ The Haar transformation includes horizontal and vertical transformation. We first apply the horizontal transformation.
Specifically, we multiply the similar pixels matrix S € R**16 and the horizontal transformation matrix H, € R6*16;
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We stack the all these column vectors to form T' = [t, ..., t15] € R**16. We then represent T by rows as T4 = [t1 ', ... t* |7 ¢
R**16 and perform vertical Haar transformation. Specifically, we multiply the matrix T# € R**!6 and the vertical transfor-
mation matrix H; € R**4:
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After the thresholding step, we could get the thresholded representation matrix T € R*¥16, We next perform inverse vertical
Haar transformation and inverse horizontal Haar transformation. We first apply the inverse vertical transformation. Specifically,
we multiply the inverse vertical transformation matrix H;; € R**% and the thresholded representation matrix T* € R**16:

th = %(il +8%) + %f?’,

S 1.

t? = 14(tl + ) — \?t?’, N
B =l ) ot

7= %(51 _2)- %54

*Corresponding author is Jun Xu (email: nankaimathxujun@gmail.com).



We stack all these row vectors to form T = [())T,...,(t)T]T € R*¥!6. We then represent T by columns as T =
[t1,...,t15] € RY*16 and perform inverse horizontal Haar transformation. Specifically, we multiply the matrix T' € R**1¢ and
the inverse horizontal transformation matrix H,, € R16*16.
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We stack all these column vectors together and form the smoothed similar pixel matrix S = (8%, ..., 81] € R¥¥16.

II. MORE COMPARISONS OF DIFFERENT IMAGE SMOOTHING METHODS

Here, we conduct more comparisons of different image smoothing methods on the datasets of NKS, [1], [6], [9]. In Figures 1-
5, we compare PSNR, SSIM [4], FSIM [7], and visual quality of different methods on image smoothing on the dataset of
NKS. In Figures 6-26, we compare the visual quality of different methods on image smoothing on the datasets of [1], [0],
[9]. The comparison rsults demonstrate that the PNLS method achieves better visual quality than the other image smoothing
methods.
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(a) Ground Truth (b) Input Image
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(f) TF [2] (2) RTV [60] (h) ResNet [9] (i) VDCNN [9] () Ours

34.26/0.9497/0.9206 34.92/0.9698/0.9528 34.43/0.9795/0.9584 34.42/0.9762/0.9547 34.92/0.9751/0.9591
Fig. 1. Comparison of smoothed images and PSNR(dB)/SSIM/FSIM results by different methods on the image “S03_T07” from our NKS dataset. The best
results are highlighted in bold.
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(a) Ground Truth (b) Input Image (c) FIP [3] (d) LO [5] (e) RGF [8]
() TF [2] (g) RTV [6] (h) ResNet [9] (i) VDCNN [9] () Ours

32.08/0.8773/0.8960 28.13/0.8232/0.7957 31.67/0.8764/0.9097 31.58/0.8717/0.8994 31.85/0.8975/0.9156
Fig. 2. Comparison of smoothed images and PSNR(dB)/SSIM/FSIM results by different methods on the image “S07_T02” from our NKS dataset. The best
results are highlighted in bold.

(a) Ground Truth (b) Input Image (c) FIP [3] (d) LO [5] (e) RGF [?]
() TF [2] (g) RTV [6] (h) ResNet [9] (i) VDCNN [9] () Ours

33.56/0.9271/0.8849 32.59/0.9668/0.9044 33.22/0.8909/0.7968 34.11/0.9135/0.8356 37.89/0.9833/0.9044
Fig. 3. Comparison of smoothed images and PSNR(dB)/SSIM/FSIM results by different methods on the image “S09_T09” from our NKS dataset. The best
results are highlighted in bold.



(a) Ground Truth (b) Input Image (©) FIP [3]

(f) TF [2] (g) RTV [6] (h) ResNet [9] (i) VDCNN [9] () Ours

30.15/0.8256/0.8994 28.00/0.7975/0.8374 31.64/0.8847/0.9392 31.25/0.8726/0.9277 32.18/0.8859/0.9417
Fig. 4. Comparison of smoothed images and PSNR(dB)/SSIM/FSIM results by different methods on the image “S10_T02” from our NKS dataset. The best
results are highlighted in bold.

() T [2] (g) RTV [6] (h) Reset [9] (1) VDCN [9] Q) Ors

33.39/0.8572/0.9290 30.41/0.8278/0.9351 30.56/0.8035/0.9604 31.72/0.8253/0.9530 33.78/0.8755/0.9385
Fig. 5. Comparison of smoothed images and PSNR(dB)/SSIM/FSIM results by different methods on the image “S14_T06” from our NKS dataset. The best
results are highlighted in bold.

(e) RGF [¢] %) ResNet [9] (g) VDCNN [9] (h) FIP [z]
Fig. 6. Comparison of smoothed images by different methods on the image “0073” from the DIV2K dataset [1].



() RGF [8] (f) ResNet [9]
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(g) VDCNN [9] (h) FIP [3]
Fig. 7. Comparison of smoothed images by different methods on the image “0102” from the DIV2K dataset [1].

(a) Input Image (d) RTV [
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(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]
Fig. 8. Comparison of smoothed images by different methods on the image “0105” from the DIV2K dataset [1].
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(e) RGF [8] (f) ResNet [9] (g) VDCNN [9]
Fig. 9. Comparison of smoothed images by different methods on the image “0117” from the DIV2K dataset [1].

| (h) FIP [3]



(b) Ours | " (c) LO [5] " | (d) RTV [6]

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]
Fig. 10. Comparison of smoothed images by different methods on the image “0146” from the DIV2K dataset [1].

(e) RGF [¢] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]
Fig. 11. Comparison of smoothed images by different methods on the image “0154” from the DIV2K dataset [1].

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]
Fig. 12. Comparison of smoothed images by different methods on the image “0166” from the DIV2K dataset [1].
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(e) RGF [8] (f) ResNet [9] (g) VDCNN [9]
Fig. 13. Comparison of smoothed images by different methods on the image “0205” from the DIV2K dataset [!].

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]
Fig. 14. Comparison of smoothed images by different methods on the image “0404” from the DIV2K dataset [!].

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]
Fig. 15. Comparison of smoothed images by different methods on the image “0094” from the dataset in [9]



(a) Input Image (b) Ours (d) RTV [6]

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]

Fig. 16. Comparison of smoothed images by different methods on the image “0115” from the dataset in [9]

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]

Fig. 17. Comparison of smoothed images by different methods on the image “0169” from the dataset in [9]
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(e) RGF [8] (f) ResNet [9] (g) VDCNN [9]

Fig. 18. Comparison of smoothed images by different methods on the image “0314” from the dataset in [°].
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(h) FIP [3]

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]
Fig. 19. Comparison of smoothed images by different methods on the image “0334” from the dataset in [9].



(a) Input Image (b) Ours | (c) LO [5 _ (d)RTV [6]

(e) RGF [8] ( ResNet [9] (g . VDCNN [9] () FIP [3]

Fig. 20. Comparison of smoothed images by different methods on the image “02_23" from the dataset in [6]
(a) Input Image (b) Ours (c) LO [5] (d) RTV [6]

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]

Fig. 21. Comparison of smoothed images by different methods on the image “03_11" from the dataset in [0]




(a) Input Image (b) Ours (c) LO [5] (d) RTV [6]

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]
Fig. 22. Comparison of smoothed images by different methods on the image “11_07” from the dataset in [6]

(a) Input Image (b) Ours (c) LO [5] (d) RTV [6]

(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]

Fig. 23. Comparison of smoothed images by different methods on the image “11_08" from the dataset in [6]
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(a) Input Image (b) Ours (c) LO [5] (d) RTV [6]
(e) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]

Fig. 24. Comparison of smoothed images by different methods on the image “11_17” from the dataset in [0]

(a) Input Image (d) RTV [6]

(e) RGF [8] ( ResNet [9] (gVDCNN [9] (h) FIP [3]

Fig. 25. Comparison of smoothed images by different methods on the image “11_26" from the dataset in [6]
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(©) LO 5]

(e‘) RGF [8] (f) ResNet [9] (g) VDCNN [9] (h) FIP [3]

Fig. 26. Comparison of smoothed images by different methods on the image “12_53” from the dataset in [6]
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