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Abstract—Deep neural networks (DNNs) are widely used and
demonstrated their power in many applications, like computer
vision and pattern recognition. However, the training of these net-
works can be time-consuming. Such a problem could be alleviated
by using efficient optimizers. As one of the most commonly used
optimizers, SGD-Momentum uses past and present gradients
for parameter updates. However, in the process of network
training, SGD-Momentum may encounter some drawbacks, such
as the overshoot phenomenon. This problem would slow the
training convergence. To alleviate this problem and accelerate
the convergence of DNN optimization, we propose a proportional-
integral-derivative (PID) approach. Specifically, we investigate the
intrinsic relationships between PID based controller and SGD-
Momentum firstly. We further proposed a PID based optimization
algorithm to update the network parameters, where the past,
current, and change of gradients are exploited. Consequently,
our proposed PID based optimization alleviates the overshoot
problem suffered by SGD-Momentum. When tested on popular
DNN architectures, it also obtains up to 50% acceleration with
competitive accuracy. Extensive experiments about computer
vision and natural language processing demonstrate the effective-
ness of our method on benchmark datasets, including CIFAR10,
CIFAR100, Tiny-ImageNet, and PTB. We’ve released the code at
https://github.com/tensorboy/PIDOptimizer.

Index Terms—Deep neural network, optimization, PID control,
SGD-Momentum.

I. INTRODUCTION

Benefitting from the availability of great number of data
(e.g., ImageNet [1]) and the fast-growing power of GPUs, deep
neural networks (DNNs) success in a wide range of applica-
tions, like computer vision and natural language processing.
Despite the significant successes of DNNs, the training and
inference of deep and wide DNNs are often computationally
expensive, which may take several days or longer even with
powerful GPUs. Many stochastic optimization algorithms are
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not only used in the field of machine learning [2], but also
deep learning [3]. It is very important to explore how to boost
the speed of training DNNs while maintaining performance.
Furthermore, with a better optimization method, even a com-
putation limited hardware (e.g., IoT device) can save lots of
time and memory usage. The accelerating methods of the
computational time for DNNs can be divided into two parts,
the speed-up of training and that of test. The methods in [4]–
[6] aiming to speed up test process of DNNs often focus on
not only the decomposition of layers but also the optimization
solutions to the decomposition. Besides, there has been other
streams on improving testing performance of DNNs, such as
the FFT-based algorithms [7] and reduced parameters in deep
nets [8]. As for the methods to speed up the training speed
of DNNs, the key factor is the way to update the millions
of parameters of a DNN. This process mainly depends on
optimizer and the choice of optimizer is also a key point of a
model. Even with the same dataset and architecture, different
optimizers could result in very different training effects, due to
different directions of the gradient descent, different optimizers
may reach completely different local minimum [9].

The learning rate is another principal hyper-parameter for
DNN training [10]. Based on different strategies of choosing
learning rates, DNN optimizers can be categorized into two
groups: 1. Hand-tuned learning rate optimizers: stochastic gra-
dient descent (SGD) [11], SGD Momentum [12], Nesterov′s
Momentum [12], etc. 2. Auto learning rate optimizers such as
AdaGrad [13], RMSProp [14] and Adam [15], etc.

The SGD-Momentum method puts past and current gra-
dients into consideration and then updates the network pa-
rameters. Although SGD-Momentum performs well in most
cases, it may encounter overshoot phenomenon [16], which
indicates the case where the weight exceeds its target value
too much and fails to correct its update direction. Such an
overshoot problem costs more resource (e.g., time and GPUs)
to train a DNN and also hampers the convergence of SGD-
Momentum. So, a more efficient DNN optimizer is eagerly
desired to alleviate the overshoot problem and achieve better
convergence.

The similarity between optimization algorithms popularly
employed in DNN training and classic control methods has
been investigated in [17]. In automatic control systems, the
feedback control is essential. Proportional-integral-derivative
(PID) controller is the most widely used feedback control
mechanism, due to its simplicity and functionality [18]. Most
of industrial control system are based on PID [19], such as
unmanned aerial vehicles [20], robotics [21], and autonomous
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vehicles [22]. PID control takes current error, change in
error (differentiation of the error over time), and the past
cumulative error (integral of the error over time) into account.
So, the difference between current and expected outputs will
be minimized.

On the other hand, few studies have been done on the
connections between PID with DNN optimization. In this
work, we investigate specific relationships analytically and
mathematically towards this research line. We first clarify
the intrinsic connection between PID controller and stochastic
optimization methods, including SGD, SGD-Momentum, and
Nesterov′s Momentum. Finally, we propose a PID based
optimization method for DNN training. Similar to SGD-
Momentum, our proposed PID optimizer also considers the
past and current gradients for network update. The Laplace
Transform [23] is further introduced for hyper-parameter ini-
tialization, which makes our method simple yet effective. Our
major contributions of this work can be summarized in three
folds:

• By combining the error calculation in the feedback con-
trol system with network parameters’ update, we reveal
a potential relationship between DNN optimization and
feedback system control. We also find that some opti-
mizers (e.g., SGD-Momentum) are special cases of PID
control device.

• We propose a PID based DNN optimization approach
by taking the past, current, and changing information
of the gradient into consideration. The hyper-parameter
in our PID optimizer is initialized by classical Laplace
Transform.

• We systematically experiment with our proposed PID
optimizer on CIFAR10, CIFAR100, Tiny-ImageNet, and
PTB datasets. The results show that PID optimizer is
faster than SGD-Montum in DNN training process.

A preliminary version of this work was presented as a
conference version [24]. In the current work, we incorporate
additional contents in significant ways:

• We evaluate the performance of our PID optimizer on the
language modeling application by utilizing the character-
level Penn Treebank (PTB-c) dataset with an LSTM
network.

• The proposed PID optimizer is applied on GAN with
MNIST dataset and show the digital images generated
by them separately to illustrate that our method is also
applicable in GAN.

• We update the conclusion that the proposed PID optimizer
exceeds SGD-Momentum in GANs and RNNs.

We organize the rest of this paper as follows. Section II
briefly surveys related works. Section III investigates the
relationship between PID controller and DNN optimization al-
gorithms. Section IV introduces the proposed PID approach for
DNN optimization. Experimental results and detailed analysis
are reported in Section V. Section VI concludes this paper.

II. RELATED WORKS

A. Classic Deep Neural Network Architectures

CNN. Convolutional neural networks (CNNs) [25] have
recently achieved great successes in visual recognition tasks,
including image classification [26], object detection [27]–
[29], and scene parsing [30]. Recently, lots of deep CNN
architectures, such as VGG, ResNet, and DenseNet, have been
proposed to improve the performance of these tasks mentioned
above. Network depth tends to improve network performance.
However, the computational cost of these deep networks also
increases significantly. Moreover, real-world systems may be
affected by the high cost of these networks.

GAN. Goodfellow et al. firstly proposed generative ad-
versarial network (GAN) [31], which consists of generative
and adversarial networks. The generator tries to obtain very
realistic outputs to foolish the discriminator, which would
be optimized to distinguish between the real data and the
generated outputs. GANs will be trained to generate synthetic
data, mimicking genuine data distribution.

In machine learning, models can be classified into two
categories: generative model and discriminative model. A dis-
criminative network (denoted as D) can discriminate between
two (or more) different classes of data, such as CNN trained
for image classification. A generative network (denoted as
G) can generate new data, which fit the distribution of the
training data. For example, a trained Gaussian Mixture Model
is able to generate new random data, which more-or-less fit
the distribution of the training data.

GANs pose a challenging optimization problem due to
the multiple loss functions, which must be optimized simul-
taneously. The optimization of GAN is conducted by two
steps: 1) optimize discriminative network while fixing the
generative one. 2) optimize the generative network while
fixing the discriminative network. Here, fixing a network
means only allowing the network to pass forward and not
perform back-propagation. These two steps are seamlessly
alternating updated and dependent on each other for efficient
optimization. After enough training cycles, the optimization
objective V (D,G) introduced in [31] will reach the situation,
where the probability distribution of the generator exactly
matches the true probability distribution of the training data.
Meanwhile, the discriminator has the capability to distinguish
the realistic data from the virtual generated ones. However, the
perfect cooperation between the generator and discriminator
will fail occasionally. The whole system will reach the status
of “model collapse”, indicating that the discriminator and the
generator tend to produce the same outputs.

LSTM. Hochreiter et al. firstly proposed the Long Short
Term network, generally called LSTM, to obtain long-term
dependency information from the network. As a type of
recurrent neural network (RNN), LSTM has been widely
used and obtained excellent success in many applications.
LSTM is deliberately designed to avoid long-term dependency
problems. Remember that long-term information is the default
behavior of LSTM in practice, rather than the ability to acquire
at great cost. All RNNs have a chained form of repeating
network modules. In the standard RNN, this repeating module
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often has a simple structure (e.g., “tanh” layer). The outputs
of all LSTM cells are utilized to construct a new feature,
where multinomial logistic regression is introduced to form
the LSTM model.

One widely used way to evaluate RNN models is the adding
task [32], [33], which takes two sequences of length T as input.
By sampling in the range (0,1) uniformly, we form the first
sequence. For another sequence, we set two entries as 1 and
the rest as 0. The output is obtained by adding two entries in
the first sequence. The positions of the entries are determined
by the two entries of 1 from the second sequence.

B. Accelerating the Training/Test Process of DNNs

Training process acceleration. Since DNNs are mostly
computationally intensive, Han et al. [34] proposed a deep
compression method to reduce the storage requirement of
DNNs by 35× to 49× without affecting the accuracy. More-
over, the compressed model has 3× to 4× layer-wise speedup
and 3× to 7× better energy efficiency. Unimportant connec-
tions are pruned. Weight sharing and Huffman coding are
applied to quantize the network. This work mainly attempts
to reduce the number of parameters of neural networks. Liu
et al. proposed the network slimming technique that can
simultaneously reduce the model size, running-time mem-
ory, and computing operations [35]. Yang et al. proposed a
new filter pruning strategy based on the geometric median
to accelerate the training of deep CNNs [36]. Dai et al.
proposed a synthesis tool to synthesize compact yet accurate
DNNs [37]. Du et al. proposed a Continuous Growth and
Pruning (CGaP) scheme to minimize the redundancy from
the beginning [38]. Hubara et al. introduced a method to
train Quantized Neural Networks that reduce memory size
and accesses during forward pass [39]. In [40], Han et al.
presented an intuitive and easier-to-tune version of ASGD
(please refer to Section IV) and showed that ASGD leads to
faster convergence significantly with a comparable accuracy
than SGD, Heavy Ball, and Nesterov′s Momentum [12].

Test process acceleration. Denton et al. [4] proposed
a method that compresses all convolutional layers. This is
achieved by approximating proper low-rank and then updat-
ing the upper layers until the prediction result is enhanced.
Based on singular value decompositions (SVD), this process
consists of numerous tensor decomposition operations and
filter clustering approaches to make use of similarities among
learned features. Jaderberg et al. [5] introduced an easy-to-
implement method that can significantly speed up pretrained
CNNs with minimal modifications to existing frameworks.
There can be a small associated loss in performance, but
this is tunable to a desired accuracy level. Zhang et al. [6]
first proposed a response reconstruction method, which in-
troduces the nonlinear neurons and a low-rank constraint.
Without the usage of SGD and based on generalized singular
value decomposition (GSVD), a solution is developed for this
nonlinear problem. Li et al. presented a method to prune
filters with relatively low weight magnitudes to produce CNNs
with reduced computation costs without introducing irregular
sparsity [41].

C. Deep Learning Optimization

In the training of DNN [10], learning rate is an essential
hyper-parameter. DNN optimizers can be categorized into two
groups based on different strategies of setting the learning
rate: 1. Hand-tuned learning rate optimizers: stochastic gra-
dient descent (SGD) [11], SGD Momentum [12], Nesterov′s
Momentum [12], etc. 2. Auto learning rate optimizers, such as
AdaGrad [13], RMSProp [14], and Adam [15], etc. Good re-
sults have been achieved on CIFAR10, CIFAR100, ImageNet,
PASCAL VOC, and MS COCO datasets. They were mostly
obtained by residual neural networks [42]–[45] trained by us-
ing SGD-Momentum. This work focuses on the improvement
of the fist category of optimizers. The introduction to these
optimizers is as follows.

Classical Momentum [25] is the first ever variant of gradient
descent involving the usage of a momentum parameter. In the
objective across iterations, it accelerates gradient descent that
collects a velocity vector in directions of continuous reduction.

Stochastic Gradient Descent (SGD) [11] is a widely used
optimizer for DNN training. SGD is easy to apply, but the
disadvantage of SGD is that it converges slowly and may
oscillate at the saddle point. Moreover, how to choose the
learning rate reasonably is a major difficulty of SGD.

SGD Momentum (SGD-M) [12] is an optimization method
that considers momentum. Compared to the original gradient
descent step, the SGD-M introduces variables related to the
previous step. It means that the parameter update direction
is decided not only by the present gradient, but also by the
previously accumulated direction of the fall. This allows the
parameters to change little in the direction where gradient
change frequently. Contrary to this, SGD-M changes parame-
ters a lot in the direction where gradient change slowly.

Nesterov′s Momentum [12] is another momentum optimiza-
tion algorithm motivated by Nesterov′s accelerated gradient
method [46]. Momentum is improved from the SGD algorithm,
so that each parameter update direction depends not only on
the gradient of the current position, but also on the direction
of the last parameter update. In other words, Nesterov′s Mo-
mentum essentially uses the second-order information of the
objective (loss function) so it can accelerate the convergence
better.

D. PID Controller

Traditionally, the PID controller has been used to control
a feedback system [19] by exploiting the present, past, and
future information of prediction error. The theoretical basis of
the PID controller was first proposed by Maxwell in 1868
in his seminal paper “On Governors” [47]. Mathematical
formulation was given by Minorsky [48]. In recent years,
several advanced control algorithms have been proposed.

We define the difference between the actual output and the
desired output as error e(t). The PID controller calculates the
error e(t) in every step t, and then applies a correction u(t)
to the system as a function of the proportional (P), integral
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Fig. 1. Illustrations about the relationships between control system and deep model training. It also shows the connection between PID controller and
SGD-Momentum.

(I), and derivative (D) terms of e(t). Mathematically, the PID
controller can be described as

u(t) = Kpe(t)+Ki

∫ t

0
e(t)dt +Kd

d
dt

e(t), (1)

where Kp, Ki, and Kd correspond to the gain coefficients of
the P, I, and D terms, respectively. The function of error e(t)
is the same as the gradient in optimization of deep learning.
The coefficients Kp, Ki, and Kd reflect the contribution to
the current correction to the current, past, and future errors
respectively.

According to our analyses, we find that PID control tech-
niques can be more useful for optimization of deep network.
The study presented in this paper is one of the first inves-
tigations to apply PID as a new optimizer to deep learning
field. Our studies have succeeded in demonstrating significant
advantages of the proposed optimizer. With the inheritance
of the advantages of PID controller, the proposed optimizer
performs well despite its simplicity.

III. PID AND DEEP NEURAL NETWORK OPTIMIZATION

We reveal the intrinsic relation between PID control and
DNNs optimization. The intrinsic relation inspires us to ex-
plore new DNNs optimization methods. The core idea of this
section is to regard the parameter update in DNNs training
process as using PID controller in the system to reach an
equilibrium.

A. Overall Connections

At first, we summarize the training process of deep learning.
Deep neural networks (DNNs) need to map the input x to the
output y though parameters θ . To measure the gap between
the DNN output and desired output, the loss function L is
introduced. Given some training data, we can calculate the loss
function L(θ ,Xtrain). In order to minimize the loss function L,
we find the derivative of the loss function L with respect to the
parameter θ and update θ with the gradient descent method
in most cases. DNNs gradually learn the complex relationship
between input x and output y by constantly updating the
parameters θ , which called DNN’s training. The updating of θ

is driven by the gradient of loss function until it’s converged.
Then, the purpose of an automated control system is to eval-

uate the system status and make it to the desired status through
a controller. In feedback control system, the controller’s action
is affected by the system’s output. The error e(t) between
the measured system status and desired status is taken into
consideration, so that controller can make system get close to
desired status.

More specifically, as shown in Eq. (1), PID controller
estimates a control variable u(t) by considering the current,
past, and future (derivative) of the error e(t).

From here we can see that the error in the PID control
system is related to the gradient in the deep neural network
training process. The update of parameters during deep neural
network (DNNs) training can be analogized to the adjustment
of the system by the PID controller.



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, SEPTEMBER 2019 5

As can be seen from the discussion above, there is high
similarity between DNNs optimization and PID based control
system. Fig. 1 shows their flowchart respectively and we can
see the similarity more intuitively. Based on the difference
between the output and target, both of them change the sys-
tem/network. The negative feedback process in PID controller
is similar as the back-propagation in DNNs optimization.

One key difference is that the PID controller computes the
update utilizing system error e(t). However, DNN optimizer
decides the updates by considering gradient ∂L/∂θ . Let’s re-
gard the gradient ∂L/∂θ as the incarnation of error e(t). Then,
PID controller could be fully related with DNN optimiza-
tion. In the next, we prove that SGD, SGD-Momentum and
Nesterov′s Momentum all are special cases of PID controller.

B. Stochastic Gradient Descent (SGD)

In DNN training, there are widely used optimizers, such as
SGD and its variants. The parameter update rule of SGD from
iteration t to t +1 is determined by

θt+1 = θt − r∂Lt/∂θt , (2)

where r is the learning rate. We now regard the gradient
∂Lt/∂θt as error e(t) in PID control system. Comparing with
PID controller in Eq. (1), we find that SGD can be viewed as
one type of P controller with Kp = r.

C. SGD-Momentum

SGD-Momentum is faster than SGD to train a DNN, be-
cause it can use history gradient. The rule of SGD-M updating
parameter is given by{

Vt+1 = αVt − r∂Lt/∂θt

θt+1 = θt +Vt+1
, (3)

where Vt is a term that accumulates historical gradients. α ∈
(0,1) is the factor that balances the past and current gradients.
It is usually set to 0.9 [49]. Dividing two sides of the 1st
formula of Eq. (3) by α t+1

Vt+1

α t+1 =
Vt

α t − r
∂Lt/∂θt

α t+1 . (4)

By applying Eq. (4) from time t +1 to 1, we have

Vt+1

α t+1 −
Vt

α t =−r
∂Lt/∂θt

α t+1
Vt

α t −
Vt−1

α t−1 =−r
∂Lt−1/∂θt−1

α t
...

V1

α1 −
V0

α0 =−r
∂L0/∂θ0

α1 .

(5)

By adding the aforementioned equations together, we get

Vt+1

α t+1 =
V0

α0 − r
t

∑
i=0

∂Li/∂θi

α i+1 . (6)

To make it more general, we set the initial condition V0 = 0,
and thus the above equation can be simplified as follows

Vt+1 =−r
t

∑
i=0

α
t−i

∂Li/∂θt−1. (7)

Put Vt+1 into the 2nd formula of Eq. (3), we have

θt+1−θt =−r
∂Lt

∂θt
− r

t−1

∑
i=0

α
t−i

∂Li/∂θi. (8)

We could learn that parameter update process considers both
the current gradient (P control) and the integral of past
gradients (I control). If we assume α = 1, we get following
equation

θt+1−θt =−r∂Lt/∂θt − r
t−1

∑
i=0

∂Li/∂θi. (9)

Comparing Eq. (9) with Eq. (1), we can see that SGD-
Momentum is a PI controller with Kp = r and Ki = r. By
using some mathematical skill [50], we simplify Eq. (3) by
removing Vt . Then, Eq. (9) can be rewritten as

θt+1 = θt − r∂Lt/∂θt − r
t−1

∑
i=0

∂Li/∂θiα
t−i. (10)

We can see it clear that the network parameter update depends
on both current gradient r∂Lt/∂θt and the integral of past
gradients r ∑

t−1
i=0 ∂Li/∂θiα

t−i. It should be noted that the I
term includes a decay factor α . Due to the huge number of
training data, it’s better to calculate the gradient based on mini-
batch of training data. So, the gradients behave in a stochastic
manner. The purpose of the introduction of decay term α is
to keep the gradients away from current value, so that it can
alleviate noise. In all, based on the analyses, we can view
SGD-Momentum as a PI controller.

D. Nesterov′s Momentum

Momentum is improved from the SGD algorithm and it
considers the second-order information of the objective (loss
function), so it can accelerate the convergence better. We set
the update rule as{

Vt+1 = αVt − r∂Lt/∂ (θt +αVt)

θt+1 = θt +Vt+1.
(11)

By using a variable transform θ̂t = θt +αVt , and formulating
the update rule with respect to θ̂ , we have{

Vt+1 = αVt − r∂Lt/∂ θ̂t

θ̂t+1 = θ̂t +(1+α)Vt+1−αVt .
(12)

Similar to the derivation process in Eq. (4)-(6) of SGD-
Momentum, we have

Vt+1 =−r(
t

∑
i=1

(α t−i
∂Li/∂ θ̂i)). (13)

With Eq. (13), Eq. (11) can be rewritten as

θ̂t+1− θ̂t =− r(1+α)∂Lt/∂ θ̂t −αr(
t−1

∑
i=1

(α t−i
∂Li/∂ θ̂i)).

(14)
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We could conclude that the network parameter update consid-
ers the current gradient (P control) and the integral of past
gradients (I control). If we assume α = 1, then

θ̂t+1− θ̂t =−2r(∂Lt/∂ θ̂t)− r(
t−1

∑
i=0

(∂Li/∂ θ̂i)). (15)

Comparing Eq. (15) with Eq. (1), we can prove that Nesterov′s
Momentum is a PI controller with Kp = 2r and Ki = r.
What’s more, compared with SGD-Momentum, the Nesterov′s
Momentum would utilize the current gradient and integral of
past gradients to update the network parameters, but achieves
larger gain coefficient Kp.

IV. PID BASED DNN OPTIMIZATION

A. The Overshoot Problem of SGD-Momentum

We can learn it from Eqs. (10) and (14) that the Momentum
optimizer will accumulate history gradients to accelerate. But
on the other hand, the updating of parameters may be in wrong
path, if the history gradients lag the update of parameters.
According to the definition “the maximum peak value of the
response curve measured from the desired response of the sys-
tem” in discrete-time control systems [16], this phenomenon
is named as overshoot. Specifically, it can be written as

Overshoot =
θmax−θ ∗

θ ∗
, (16)

where θmax and θ ∗ are the maximum and optimum values of
the weight, respectively.

The overshoot problem’s test benchmark is the first function
of De Jong′s [51] due to its smooth, unimodal, and symmetric
characteristics. The function can be written as

f (x) = 0.1x2
1 +2x2

2, (17)

whose search domain is −10≤ xi ≤ 10, i = 1,2. For this func-
tion x∗ = (0,0), f (x∗) = 0, we can pursue a global minimum
rather then a local one.

To build a simple PID optimizer, we introduce a derivative
term of gradient based on SGD-Momentum

PID = Momentum+Kd(∂ f (x)/∂xc−∂ f (x)/∂xc−1), (18)

where c is the present iteration index for x. With different
choices of Kd in Eq. (18), we shows the results of simulation
in Fig. 2, where the loss-contour map is represented as the
background. The redder, the bigger the loss function value is.
In contrast, the bluer, the smaller the loss function value is.
The x-axis and y-axis denote x1 and x2, respectively. Both x1
and x2 are initialized to −10. We use red and yellow lines
to show the path of PID and SGD-Momentum, respectively.
It is obvious that SGD-Momentum optimizer suffers from
overshoot problem. By increasing Kd gradually (0.1, 0.5, and
0.93, respectively), our PID optimizer uses more “future”
error, so that it can largely alleviate the overshoot problem.

B. PID Optimizer for DNN

We are motivated by the simple example in Section IV-A
and seek a PID optimizer to boost the convergence of DNN
training. From Eq. (10), SGD-Momentum can be viewed as
a PI controller, which takes current and past gradient infor-
mation actually. Fig. 2 shows that PID controller introduces a
derivative term of gradient to use the future information. Then,
the overshoot problem can be alleviated obviously.

On the other hand, it is very easy to introduce noise when
computing of gradients, because the training is often conducted
in a mini-batch manner. We also try to estimate the average
moving of the derivative part. Our proposed PID optimizer
updates network parameter θ in iteration (t +1) by

Vt+1 = αVt − r∂Lt/∂θt

Dt+1 = αDt +(1−α)(∂Lt/∂θt −∂Lt−1/∂θt−1)

θt+1 = θt +Vt+1 +KdDt+1.

(19)

We could learn from Eq. (19) that a hyper-parameter Kd is
introduced in the proposed PID optimizer. We initialize Kd
by introducing Laplace Transform [23] theory and Ziegler-
Nichols [52] tuning method.

C. Initialization of Hyper-parameter Kd

The Laplace Transform converts the function of real variable
t to a function of complex variable s. The most common
usage is to convert time to frequency. Denote the Laplace
transformation of f (t) as F(s). There is

F(s) =
∫

∞

0
e−st f (t)dt, for s > 0. (20)

In general, it’s easier to solve F(s) than f (t), which can be
reconstructed from F(s) with the Inverse Laplace transform

f (t) =
1

2πi
lim

T→∞

∫
γ+iT

γ−iT
estF(s)ds, (21)

where i is the unit of imagery part and γ is a real number.
By using Laplace Transform, we can first transform our

PID optimizer into its Laplace transformed functions of s, and
then simplify the algebra. After obtaining the transformation
F(s), we can achieve the desired solution f (t) with the inverse
transform.

We initialize a parameter of a node in DNN model as a
scalar θ0. After enough times of updates, the optimal value θ ∗

can be obtained. We simplify the parameter update in DNN
optimization as one step response (from θ0 to θ ∗) in control
system. We introduce the Laplace Transform to set Kd and
denote the time domain change of weight θ as θ(t).

The Laplace Transform of θ ∗ is θ∗
s [53]. We denote by

θ(t) the weight at iteration t. The Laplace Transform of θ(t)
is denoted as θ(s), and that of error e(t) as E(s),

E(s) =
θ ∗

s
−θ(s).

The Laplace transform of PID [53] is

U(s) = (Kp +Ki
1
s
+Kds)E(s). (22)
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Fig. 2. The overshoot problem of momentum with different values of Kd . The red and yellow lines indicate the results obtained by PID and SGD-Momentum
respectively.

In our case, the u(t) corresponds to the update of θ(t). So we
replace U(s) with θ(s), and with E(s) = θ∗

s −θ(s). Eq. (22)
can be rewritten as

θ(s) = (Kp +Ki
1
s
+Kds)(

θ ∗

s
−θ(s)). (23)

With this form, it is easy to derive a standard closed loop
transfer function [54] as

θ ∗

s
−θ(s) =

1
Kd

ω2
n

s2 +2ζ ωns+ω2
n
, (24)

where {Kp+1
Kd

= 2ζ ωn
Ki
Kd

= ω2
n .

(25)

Eq. (24) can be rewritten as

θ ∗

s
−θ(s) =

(s+ζ ωn)+
ζ√

1+ζ 2
ωn

√
1−ζ 2

(s+ζ ωn)2 +ω2
n (1−ζ 2)

. (26)

We can get the time (iteration) domain form of θ(s) by
using the Inverse Laplace Transform table [53] and the initial
condition of the θ (θ0):

θ(t) = θ
∗− (θ ∗−θ0)sin(ωn

√
1−ζ 2t + arccos(ζ ))

eζ ωnt
√

1−ζ 2
(27)

and {
(Kp +1)/Kd = 2ζ ωn

Ki/Kd = ω2
n ,

(28)

where ζ is damping ratio and ωn is natural frequency of the
system. The evolution process of a weight as an example of
θ(t) is shown in Fig. 3. From Eq. (28), we get

Ki =
(Kp +1)2

4Kdζ
. (29)

From Eq. (29) we know that Ki is a monotonically decreas-
ing function of ζ . Based on the definition of overshoot in

tmax

θ0

θ∗

θmax

t

θ(t)

Fig. 3. The evolution process of the weight θ(t) for PID optimizer.

Eq. (16), it is obvious that ζ is monotonically decreasing with
overshoot. Then, Ki is a monotonically increasing function of
overshoot. In a word, the more history error (Integral part),
the more overshoot problem in the system. This is a good
explanation of why SGD-Momentum overshoots its target and
need more training time.

By differentiating θ(t) w.r.t. time t, and let

dθ(t)
dt

= 0.

We have the peak time of the weight as

tmax =
π

wn
√

1−ζ 2
. (30)

Put tmax to Eq. (27), we have θmax, and put θmax to Eq. (16),
we have

Overshoot =
θ(tmax)−θ ∗

θ ∗
= e

−ζ π√
1−ζ 2

. (31)

We could learn from Eq. (27) that the term sin(ωn
√

1−ζ 2t+
arccos(ζ )) brings periodically oscillation change to the weight,
which is no more than 1. The term e−ζ ωnt mainly controls the
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convergence rate. It should be noted that the value of hyper-
parameter Kd in calculating the derivate

e−ζ ωn = e−
Kp+1
2Kd . (32)

Based on the above analyses, we know that the training of
DNN can be accelerated by using large derivate. But on the
other hand, if Kd is too large, the system will be fragile. After
some experiments, we set the Kd based on the Ziegler-Nichols
optimum setting rule [52].

According to the Ziegler-Nichols′ rule, the ideal setup of
Kd should be one third of the oscillation period (T ), which
means Kd = 1

3 T . From Eq. (27), we can get T = 2π

ωn
√

1−ζ 2
. If

we make a simplification that the α in Momentum is equal to
1, then Ki = Kd = r. Combined with Eq. (28), Kd will have a
closed form solution

Kd = 0.25r+0.5+(1+
16
9

π
2)/r. (33)

For real-world cases, where different DNNs are applied train
on different datasets, we would firstly start with this ideal
setting of Kd and change it slightly latter.

V. EXPERIMENTAL RESULTS

We introduce four commonly used datasets for the experi-
ments. Then, we compare our proposed optimizer with other
optimizers by using CNN and LSTM on four commonly used
datasets. Specifically, we first train an multilayer perceptron
(MLP) on the MNIST dataset to demonstrate the advantages
of PID optimizer. We then train CNNs on the CIFAR datasets
to show that our PID optimizer achieves competitive accuracy
compared with other optimizers, but it has a faster training
speed. Further studies are carried out to prove that our PID
optimizer also performs well on a larger dataset. Based on
the Tiny-ImageNet dataset [55], we carry out a series of
experiments. The results indicate that it is applicable for
our PID optimizer to be extended to modern networks. Our
proposed PID optimizer is set to use all hyper-parameters that
are detailed for SGD-Momentum. The initial learning rate and
learning rate schedule vary with different experiments.

A. Datasets

MNIST Dataset. The MNIST dataset [56] of handwritten
numbers from 0 to 9. Being a subset of a larger dataset NIST,
MNIST consists of 60,000 training data and 10,000 test ones.
The digits have been size-normalized and centered in a fixed-
size image of 28×28 pixels. With the usage of anti-aliasing
technique, the preprocessed images contain gray levels.

CIFAR Datasets. The CIFAR10 dataset [57] has 60,000
RGB color images, the shape of which is 32×32. There are
10 classes, each of which includes 6,000 images. 50,000 and
10,000 images are used for training and testing respectively.
Similar as CIFAR10, CIFAR100 dataset [57] consists of 100
classes with 600 images for each class. 500 and 100 images are
extracted from each class for training and testing respectively.
The 100 classes in the CIFAR100 [57] are further arranged
into 20 super classes. We performed random crops, horizontal
flips, and padded 4 pixels around each side on the original
image for data augmentation.
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Fig. 4. Comparison between PID and other optimizers on the MNIST dataset
for 20 epochs. Top row: the curves of training loss and validation loss. PID
optimizer obtains lower losses and converges faster. Bottom row: the curves
of training accuracy and validation accuracy. PID optimizer performs much
better than others for both training and test accuracies.
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Fig. 5. PID vs. other optimizers on the MNIST dataset for 20 epochs. Standard
deviation of 10 runs. Top row: the curves of training loss and validation loss.
Bottom row: the curves of training accuracy and validation accuracy.

Tiny ImageNet Dataset. There are 200 classes in Tiny-
Imagenet [55] dataset. Each class contains 500, 50, and 50
images for training, validation, and testing respectively. The
Tiny-ImageNet is harder to be classed correctly than the
CIFAR datasets. It is not only because a larger number of
classes, but also the relevant objects need to be classified
usually occupy little pixels of the whole image.

PTB Dataset. Penn Treebank dataset, known as PTB
dataset, is widely used in machine learning of NLP (Natural
Language Processing) research. The PTB dataset has 2,499
stories which come from a three-year WSJ collection of
98,732 stories.
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TABLE I
COMPARISONS BETWEEN PID AND SGD-MOMENTUM OPTIMIZERS IN TERMS OF TEST ERRORS AND TRAINING EPOCHS. WE REPORT THE RESULTS

BASED ON CIFAR10 AND CIFAR100.

Model Depth-k Params (M) Runs CIAFR10 Epochs CIFAR100 Epochs
- - - - PID/SGD-M PID/SGD-M PID/SGD-M PID/SGD-M

Resnet [42] 110 1.7 5 6.23/6.43 239/281 24.95/25.16 237/293
1202 10.2 5 7.81/7.93 230/293 27.93/27.82 251/296

PreActResNet [44] 164 1.7 5 5.23/5.46 230/271 24.17/24.33 241/282

ResNeXt29 [58] 8-64 34.43 10 3.65/3.43 221/294 17.46/17.77 232/291
16-64 68.16 10 3.42/3.58 209/289 17.11/17.31 229/283

WRN [45] 16-8 11 10 4.42/4.81 213/290 21.93/22.07 229/283
28-20 36.5 10 4.27/4.17 208/290 20.21/20.50 221/295

DenseNet [43] 100-12 0.8 10 3.83/4.30 196/291 19.97/20.20 213/294
190-40 25.6 10 3.11/3.32 194/293 16.95/17.17 208/297
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Fig. 6. Comparison among PID and other optimizers on the CIFAR10 dataset
by using DenseNet 190-40. Top row: the curves of training and validation loss.
PID optimizer obtains lower losses and behaves more stable. Bottom row: the
curves of training accuracy and validation accuracy. PID optimizer performs
slightly better than SGD-Momentum for both training and test accuracies.

B. Results of CNNs

Results of MLP on MNIST dataset. To compare the
proposed PID optimizer with SGD-Momentum [12], we first
carry out a series of experiments. We use MNIST dataset to
train a basic network, MLP. There are 1,000 hidden nodes in
the hidden layer. ReLU acts as nonlinearity layer in the MLP
network. We place softmax layer on the top. The training batch
size is 128 for 20 epochs. After running the experiments for 10
times, we obtain the average results.Fig. 4 shows comparisons
among four methods in terms of training statistics. The Adam
performs well in the early stages of training, but overall it
could be very unstable and slower than PID optimizer. As
Fig. 4 shows, the PID optimizer performs faster convergence
than other optimizers. What’s more, PID optimizer achieves
lower loss and higher accuracy in both training and validation
phases. Plus, it has stronger generalization ability on the test
dataset. It can be seen from Fig. 5 that the standard deviation
of the PID optimizer during training is minimal, which proves
its training stability. The accuracy is 98% in PID optimizer
and 97.5% in SGD-Momentum.

Results on CIFAR datasets. In order to fully test our
proposed PID optimizer, we compare it with SGD-Momentum
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Fig. 7. Comparison among PID and other optimizers on the Tiny-imagenet
dataset with DenseNet 100-12 backbone. Top row: the curves of training and
validation loss. We can see PID optimizer obtains lower training and validation
losses. Bottom row: the curves of training accuracy and validation accuracy.
PID optimizer achieves best performance.

optimizer on recent leading DNN models (ResNet [42],
PreActResNet [44], ResNeXt29 [58], WRN [45], and
DenseNet [43]). The details are shown in Tab. I, where the
second column lists the depth of networks and k. The k in
ResNeXt29, WRN, and DenseNet represent cardinality, widen-
ing factor, and growth rate respectively. The third column lists
the number of parameters. The fourth column shows the update
numbers to calculate the mean test error. The next 4 columns
show the average test error and the numbers of epoch, when
they accomplish the test errors firstly (the minimum number
of epoch to reach the best accuracy).

The following conclusion can be given from Tab. I. First,
compared with SGD-Momentum, our PID optimizer obtains
lower test errors for all architectures (except for ResNet with
depth 1,202) based on results from CIFAR10 and CIFAR100
datasets. Second, for the training epochs needed to reach
the best results, PID optimizer needs less number of train-
ing than SGD-Momentum. Specifically, compared with SGD-
Momentum, our proposed PID optimizer achieves 35% and up
to 50% acceleration on average. This reveals that the gradient
descent’s direction acts a very important role, which can be
utilized to alleviate the overshoot problem and contribute to
faster convergence for training of DNNs. In Fig. 6, we further
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present more training statistics on CIFAR10 to compare PID
and SGD-Momentum optimizers. For the backbone DenseNet
190-40 [43], we set its network depth as 190 and growth rate
as 40. Based on the experiments, we can obviously conclude
that our PID optimizer achieves faster converges than SGD-
Momentum. More important, in both training and validation
phases, PID optimizer obtains lower loss and higher accuracy.

Results on Tiny-ImageNet. We also apply our proposed
PID optimizer on the Tint-ImageNet dataset with DenseNet
100-12 architecture to indicate its effectiveness. The initial
learninig rate of four optimizers are 0.1. The decreasing
schedule is set to 50% and 75% of training epochs. The batch
size is 500. In Fig. 7, we show the curves of training loss
and accuracy, as well as validation loss and accuracy over the
change of epochs for the four optimizers. Similar to results
tested on the CIFAR datasets, the proposed PID optimizer
not only converges faster but also obtains better performance.
These results prove the generalization ability of our proposed
PID optimizer.

C. Results of GANs

During the training of generative adversarial networks
(GANs), both G and D needs to be trained. We train them
both in an alternating manner. Each of their objectives can be
expressed as a loss function that we can optimize via gradient
descent. So, we train G for a couple steps, then train D for a
couple steps, then give G the chance to improve itself, and so
on. The result is that the generator and the discriminator get
better at their objectives in terms. So that the generator can
fool the most sophisticated discriminator finally. In practice,
this method ends up with generative neural nets that are good
at producing new data.

In the experiments, we use a deep convolutional generative
adversarial networks (DCGAN) to test our proposed PID
optimizer. The discriminator of this DCGAN consists of 2
convolutional layers (with ReLU function and max pooling)
and 2 fully-connected layers. The generator of this DCGAN
consists of a fully connected layer (with batch normalization
and ReLU function) and 3 convolutional layers. The binary
cross entropy is used as a loss function. The learning rate is
initialized to 0.0003 for all optimizers. The qualitative results
of PID are illustrated in Fig. 8(b) and the SGD-Momentum
results are demonstrated in Fig. 8(a). From Fig. 8, we could
find that the generated images with PID optimizer are more
realistic than these with SGD-Momentum optimizer.

D. Results of RNNs

In this experiment, we employ a simple LSTM that only
has 1 layer with 100 hidden units. Mean squared error (MSE)
is used as the objective function for the adding problem. The
initial learning rate is set to 0.002 for SGD-Momentum and
PID optimizer. The learning rate is reduced by a factor of
10 every 20,000 training steps. We randomly generate all the
training and testing data throughout the whole experiments.
The results are shown in Fig. 9. The LSTM model with
SGD-Momentum has troubles in convergence. However, our
proposed PID optimizer can reach to a small error with very

(a) (b)

Fig. 8. PID vs. SGD-Momentum for generating images through GANs on
MNIST dataset. (a) The generated images from SGD-Momentum. (b) The
generated images from PID.
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Fig. 9. Comparison between PID and SGD-Momentum for the Adding task
of RNN. Top row: the curves of training and validation loss. PID optimizer
achieves lower training and validation losses than SGD-Momentum. Bottom
row: the curves of training and validation accuracy. Our PID optimizer
performs better in both training and test performance.

fast convergence. It indicates that our proposed PID optimizer
could effectively train LSTM.

Results on PTB dataset. In this subsection, we evaluate the
character-level Penn Treebank (PTB-c) dataset to evaluate our
proposed PID optimizer. We follow the similar experimental
settings as in [59]. Specifically, we apply the frame-wise batch
normalization [60] and set batch size as 128. The learning rate
is initially set to 0.0002 and decreases by 10 times when the
validation performance no longer improve. We also introduce
dropout [61] by using dropping probability of 0.25 and 0.3.
There is no overlapping in the sequences, whose length are set
as T = 50 for both training and testing. Then we train networks
with PID and SGD-Momentum optimizers. The results are
shown in Fig. 10. Comparing with the SGD-Momentum,
we can see that our proposed PID optimizer achieves better
performance on the LSTM model.

E. Results of different Ki and Kd

We also perform an ablation study on the hyper-parameters
of PID controller. The experiments are run on the CIFAR10
dataset with DenseNet 100-12. The initial learning rate is 0.1,
and it is reduced by 10 in the 150 and 225 epochs.
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Fig. 10. Comparison between PID and SGD-Momentum to train LSTM on
PTB dataset. Top row: the curves of training and validation loss. PID optimizer
helps to achieve smaller training and validation losses. Bottom row: the curves
of training and validation accuracy. PID optimizer helps to achieve higer
training and validation performance.
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Fig. 11. Comparison among PID controllers with different Ki on the
CIFAR10 dataset by using DenseNet 100-12. Kd is fixed to 10. Top row: the
curves of training and validation loss. Bottom row: the curves of training and
validation accuracy. Within a certain range, larger Ki achieves better validation
accuracy.

The first group of experiments investigates the variation of
training and verification statistics with Ki while Kd is fixed.
Fig. 11 demonstrates six PID controllers whose Kd is 10. In
the training, the performance of all controllers differ from each
other at an early stage, but eventually they can reach the same
level. In validation, controller with Ki = 10 achieves lowest
loss and highest validation accuracy. We also repeat this ex-
periment with Kd = 10,25,50,and100 respectively, and results
are highly similar to Fig. 11. One interesting phenomenon is
that the larger the Ki, the more affected by the decreasing
schedule.

Then we change the research object to Kd . The settings
of the second group of experiments are kept the same as
previous experiments, but the Ki is fixed. Fig. 12 shows that
their performance is highly consistent. It is also shown that the
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Fig. 12. Comparison among PID controllers with different Kd on the
CIFAR10 dataset by using DenseNet 100-12. Ki is fixed to 3. Top row: the
curves of training and validation loss. Bottom row: the curves of training and
validation accuracy.

larger the Kd , the more unstable the validation performance.
The reasons may be that large Kd leads to more change of
optimization path.

As can be seen from these experiments, Ki is more important
than Kd in this specific tasks (CIFAR10 with Densenet100-12).
Ki not only affects the speed of convergence, but also affects
the accuracy of verification.

VI. CONCLUSION AND FUTURE WORK

Motivated by the outstanding performance of proportional-
integral-derivative (PID) controller in the field of automatic
control, we reveal the connections between PID controller
and stochastic optimizers and its variants. Then we propose a
new PID optimizer used in deep neural network training. The
proposed PID optimizer reduces the overshoot phenomenon
of SGD-momentum and accelerates the training process of
DNNs by combining the present, the past and the change in-
formation of gradients to update parameters. Our experiments
on both image recognition tasks with MNIST, CIFAR, and
Tiny-ImageNet datasets and LSTM tasks with PTB dataset
validates that the proposed PID optimizer is 30% to 50% faster
than SGD-Momentum, while obtaining lower error rate. We
will continue to study the relationship among optimal hyper-
parameters(Kp, Ki, and Kd) in specific task. We will conduct
more in-depth researches for more general cases in the future.
And we will investigate how to associate PID optimizer with
an adaptive learning rate for DNNs/RNNs optimization in
future works.
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