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Abstract

Images captured in severe weather such as rain and snow
significantly degrade the accuracy of vision systems, e.g.,
for outdoor video surveillance or autonomous driving. Im-
age deraining is a critical yet highly challenging task, due
to the fact that rain density varies across spatial locations,
while the distribution patterns simultaneously vary across
color channels. In this paper, we propose a variational im-
age deraining (VID) method by formulating image derain-
ing in a conditional variational auto-encoder framework.
To achieve adaptive deraining to spatial rain density, we
generate a density estimation map for each color chan-
nel, which can largely avoid over and under deraining. In
addition, to address cross-channel variations, we conduct
channel-wise deraining, motivated by our observation that
bright pixels do not tend to remain bright after deraining
unless their color channels are handled separately. Exper-
imental results show that the proposed deraining method
achieves superior performance on both synthesized and real
rainy images, surpassing previous state-of-the-art methods
by large margins.

1. Introduction
Rain streaks on an image greatly degrade its visual qual-

ity, and produce significant obstacles to computer vision al-
gorithms. Therefore, image deraining has recently received
increasing attention due to its prerequisite role in many vi-
sion tasks, such as video surveillance [24], object detec-
tion [8], and object tracking [28] in autonomous driving.

However, image deraining is highly non-trivial for three
main reasons. First, it is difficult to define the optimal solu-
tion for single image deraining due to its inherent ill-posed
nature. Moreover, most existing methods simply model a
deterministic function in deraining tasks, which may incor-
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Figure 1: Illustration of the inference stage of VID. We
sample multiple latent variables zp from the prior distribu-
tion N (µp,σp) and adopt the Monte Carlo method [22] to
perform a deterministic inference followed by weighted av-
eraging. The red arrow indicates the process of generating
latent space. c© denotes the concatenation, “A” denotes the
average operation. SDE means the spatial density estima-
tion module, which will be introduced in §3.4.

rectly collapse to a single-modal distribution. Second, rain
streaks are usually not evenly distributed on a rainy image,
i.e., rain density spatially varies across the rainy image. De-
raining by treating spatial locations equally inevitably re-
sults in over or under deraining [6, 34, 16]. To tackle this
problem, Zhang et al. [36] proposed density-aware derain-
ing method by utilizing global rain density information via
a multi-stream dense network. But this method still pro-
duces inaccurate deraining results in local regions. Third,
the rain density distribution pattern usually varies dramat-
ically across the three color channels, which is ignored by
previous methods. As a result, the pixel brightness in indi-
vidual channels will be largely compromised during derain-
ing without processing the three channels separately.

In this paper, to address the aforementioned chal-
lenges, we propose a variational image deraining (VID)
approach within the framework of conditional variational
auto-encoder (CVAE) [23]. The CVAE provides a well-
suited learning architecture for image deraining due to its
strong capability to model the latent distribution of image
priors, from which the corresponding clean image can be
generated. Different from modeling a deterministic map-



ping function in previous methods, we propose to simul-
taneously learn the latent representation of a clean image
and predicts multiple possible derained images through a
feasible CVAE model. In the learning stage, conditioned on
a rainy image, the encoder learns to map its corresponding
clean image into a latent distribution that shares common in-
formation for clean images, while the decoder reconstructs
the derained images based on a sampled variable from the
latent space distribution. In the inference stage, we sample
multiple latent variables from the prior distribution using
the prior network and adopt the Monte Carlo method [22]
to perform deterministic inference, as shown in Fig. 1.

Moreover, we observed that the derained images remain
bright in the regions corrupted by rain streaks. The rea-
son is that, since the rain density distribution differs across
different color channels, joint processing the three chan-
nels in the same manner will be problematic. By processing
each channel individually in our CVAE method, we exper-
imentally found that this problem can be largely alleviated.
The advantages of exploring different color channels have
already been shown for other low-level image processing
tasks such as dehazing [9] and denosing [30, 31]. The pro-
posed channel-wise deraining strategy is able to accurately
preserve the brightness of the derained images, which has
been demonstrated rigorously under the bright channel prior
(BCP) [7]. Note that the channel-wise processing is coupled
with the proposed CVAE model, thus enabling it to learn a
unique latent distribution for each channel of the image.

Besides, to achieve spatially adaptive deraining for non-
uniform rainy images, we propose a spatial density estima-
tion (SDE) module based on a compact dense structure [11].
The proposed SDE module takes a rainy image as input and
outputs a density estimation map for each color channel of
the rainy image to indicate the rain density on each pixel.
The density estimation maps enable adaptive deraining ac-
cording to the diverse rain densities across spatial locations.
This endows the network with the distinguishable capabil-
ity on different rainy images, sharing similar spirit as the
progressive deraining manner [20].

In summary, our major contributions are manifold:
• We propose a variational image deraining (VID) ap-

proach under the framework of conditional variational
auto-encoder (CVAE) [23], which can learn a mapping
from a single input image to many outputs. CVAE ef-
fectively perform probabilistic inference and produce
diverse predictions. To the best of our knowledge, this
is the first work that tackles the deraining problem un-
der the CVAE framework.

• We develop a spatial density estimation (SDE) mod-
ule based on a dense structure [11]. The SDE module
enables our VID method to be adaptive to the rain den-
sities across spatial locations and endows the deraining
network with accurate deraining capability.

• We introduce a novel channel-wise strategy for image
deraining. The advantages of channel-wise deraining
over the whole-channel one are rigorously elaborated
under the bright channel prior [33] and demonstrated
by extensive ablation studies (please refer to §4.4).

• Extensive experiments on diverse datasets demon-
strate that, the proposed CVAE based VID method
consistently achieve superior performance to previous
state-of-the-art deraining methods, on both synthetic
and real-world rainy images. We evaluate the pro-
posed VID method on three diverse synthetic datasets,
demonstrating its generalization ability for single im-
age deraining.

2. Related Work

In the past decade, numerous approaches [1, 2, 5, 6, 13,
18, 17, 34, 37, 16, 20, 27] have been proposed to tackle
the image deraining problem. Here, we briefly review the
related work in this domain.
Traditional methods. For the task of single image derain-
ing, many traditional machine learning methods have been
used to solve this problem. Kang et al. [13] decomposed
high-frequency parts of rainy images into rainy and non-
rainy components. Luo et al. [18] proposed a discriminative
sparse coding framework based on image patches. Chen et
al. [2] proposed a low-rank appearance model for remov-
ing rain streaks. Chang et al. [1] leveraged the low-rank
property of rain streaks, and performed deraining by low-
rankness based layer decomposition. Li et al. [17] proposed
a method that uses simple patch-based priors for both the
background and rain layers.
Deep methods. In recent years, many deep learning based
deraining methods have achieved promising performance.
Fu et al. [5] was the first to introduce deep learning meth-
ods (DerainNet) to the deraining problem. They then [6]
proposed a deep detail network (DDN) to directly reduce
the mapping range from input to output. Yang et al. [34]
designed a deep recurrent dilated network (JORDER) to
jointly detect and remove rain streaks. Zhang et al. [37]
used a generative adversarial network (GAN) to prevent
the background image from being degenerated of when
extracted from rainy images. They [37] also proposed
a density-aware multi-stream densely connected convolu-
tional neural network [11] based algorithm (DID-MDN) for
joint rain density estimation and deraining. Li et al. [16]
proposed a recurrent squeeze-and-excitation context aggre-
gation net (RESCAN) for the problem of rain streak layers
overlapping with each other. Ren et al.[20] present a new
baseline network for single image deraining. Wei et al. [27]
firstly propose a semi-supervised learning paradigm toward
for single image deraining.



Figure 2: Illustration of the learning stage of VID. x is the conditional rainy image. y is the clean image. The concatenation
of x, y and density estimation map Dc by the SDE module is the input of the encoder. The decoder produces output ŷ based
onDc and a sampled ze from the latent distributionN (µe,σe), conditioned also on x. The red arrows indicate the generation
of latent space. c© denotes the concatenation.

3. Variational Image Deraining
In this section, we present the proposed Variational Im-

age Deraining (VID) method. In §3.1, we introduce the pre-
liminaries of conditional variational auto-encoder (CVAE).
Then we describe the proposed CVAE based image derain-
ing network in §3.2, and present its inference in §3.3. The
technical details about the spatial density estimation (SDE)
module are provided in §3.4. Finally, we formulate the pro-
posed method via a channel-wise scheme in §3.5.

3.1. Preliminaries on CVAE

Variational auto-encoder (VAE) is a powerful genera-
tive framework for learning the latent structure in complex
data [15, 21, 10]. The generative process of a VAE is as
follows: the encoder takes observable data x as input and
outputs a data-conditional distribution q(z|x) over a latent
vector z. A sample z ∼ pθ is drawn from the distribution
pθ and used by the decoder to determine a code-conditional
reconstruction distribution pθ(x|z) over the original data x.
The objective of VAE is to maximize the variational lower
bound of pθ(x):

log pθ(x) ≥ −DKL(qφ(z|x)||pθ(z))+Eqφ(z|x) log pθ(x|z),
(1)

where z(l) = gφ(x, ε(l)), ε(l) ∼ N (0, I).
As VAE is uncontrolled and unable to generate specific

data, its conditional extension (i.e., CVAE) was proposed
by Sohn et al. [23] to model latent variables and data, both
conditioned on side information such as a part or label of
the image. By taking the conditioning x into account, we
can empirically write the lower bound to be maximized as:

L̃CVAE =−KL(qφ(z|x,y)||pθ(z|x))

+ Eqφ(z|x,y) log pθ(y|z,x),
(2)

where z(l) = gφ(x,y, ε(l)), ε(l) ∼ N (0, I). Here, pθ(z|x)
is assumed to be an isotropic Gaussian distribution and
pθ(x|y, z), while qφ(z|x,y) are Gaussian distributions.

CVAE has shown its great power in diverse computer
vision tasks, such as trajectory prediction [25], image col-
orization [3], image generation [4], and multi-modal human
dynamic generation [32]. In this work, to the best of our
knowledge, we are among the first to explore the potential
power of the generative CVAE model for low-level vision
tasks such as image deraining.

3.2. Learning CVAE for Image Deraining

Single image deraining is essentially an ill-posed prob-
lem and highly non-trivial for generating optimal solutions
in realistic rainy images. VAE has the innate capability of
modeling latent distributions, which can be used to find the
distributions of clean images. However, it cannot be directly
applied for deraining, since it can only take in and output
the same rainy image, while cannot output a derained image
from the rainy input. Since CVAE is able to generate spe-
cific output (e.g., derained image) from the input (e.g., rainy
image), it is employed for image deraining in this work.

As shown in Fig. 2, the proposed CVAE based deraining
framework is consisted of an encoder, a prior network, and
a decoder. Conditioned on the rainy image x, the encoder
learns to map its corresponding clean image y into a la-
tent distribution N (µe,σe) that carries information about
the clean image distribution. To guarantee that the sam-



Algorithm 1 Variational Image Deraining (VID)

Learning: Input pairs of rainy and clean images {x,y}Ni=1

θs, φ, θp, θd← Initialize parameters
repeat

SDE: D̂c ← SDEθs(x)

Encoder:
{

µe,σe ← Eφ(x,y, D̂c)
ze ← µe(x) + ε ∗ σe(x), ε ∼ N (0, I)

Prior:
{

µp,σp ← Pθp(x, D̂c)
zp ← µp(x) + ε ∗ σp(x), ε ∼ N (0, I)

Decoder: ŷ← Dθd(x, z, D̂c)
g←∇θs,φ,θp,θdL(θs, φ, θp, θd;x,y, ε)
θs, φ, θp, θd← Update parameters using gradients g

until convergence
return θs, φ, θp, θd

Inference: Input rainy image x
SDE: D̂c ← SDEθs(x)

Prior:
{

µp,σp ← Pθp(x, D̂c)
zp ← µp(x) + ε ∗ σp(x), ε ∼ N (0, I)

Decoder: ŷ← 1
S

S∑
s=1

Dθd(x, z, D̂c)

return Derained image ŷ

pled latent variable z from the latent distribution is re-
lated to the input x during inference, we introduce a prior
network to make sure that the latent distribution obtained
by learning is consistent with that obtained by inference.
The prior network learns to map a rainy image x into an-
other latent distribution N (µp,σp) that posses information
about the rainy image distribution. The decoder then recon-
structs the derained image ŷ based on a sampled ze from
the latent distribution N (µe,σe), conditioned also on the
rainy image x. To compute the gradient more amenably,
we use reparameterization technique [15] to sample z, i.e.,
z = µ(x) + ε ∗σ(x), where ε is sampled from an auxiliary
noise distribution N (0, I).

We need to maximize the conditional variational lower
bound defined in (2) for learning. The first term in (2) acts
as a regularization term that pushes qφ(ze|x,y) to match the
prior distribution pθ(zp|x). We take Kullback-Leibler (KL)
divergence as the penalty function to minimize the gap be-
tween the Gaussian distributions qφ(ze|x,y) and pθ(zp|x).
The second term in (2) is the reconstruction error, which
measures the information loss between the sampled latent
code ze and the clean image. We maximize the conditional
log-likelihood Eqφ(ze|x,y)[log pθ(ŷ|x, ze)] for accurate re-
construction. In practice, the reconstruction error can be
computed as the L2 loss between y and ŷ.

3.3. Inference

To obtain a deterministic output during inference, we
draw S latent codes {z(s)

p }Ss=1 from the prior distribution
pθ(zp|x) using the prior network, and take the average

of the posteriors to make a prediction. We compute the
marginal likelihood using the Monte Carlo method [22]:

pθ(y|x) ≈ 1

S

S∑
s=1

pθ(y|x, z(s)
p ), z(s)

p ∼ pθ(zp|x). (3)

We use the Monte Carlo sampling to estimate the condi-
tional likelihoods (CLL) of the second term of (2). We find
that 100 samples are enough to obtain an accurate estimate
of the CLL in our experiments (please refer to (3)). We sum-
marize the learning and inference procedures of the pro-
posed VID method in Algorithm 1.
Loss for CVAE. The CVAE is trained to maximize the con-
ditional log-likelihood of the second term of (2). Since this
objective function is intractable, we instead maximize the
variational lower bound in (2). We minimize the KL diver-
gence between the distribution qφ(z|x,y) and the prior dis-
tribution pθ(z|x) to mitigate the discrepancies between the
encoding of latent variables at learning and inference stage
as follows:

LKL =

N∑
i=1

qφ(zi|xi,yi) log(
qφ(zi|xi,yi)
pθ(zi|xi)

), (4)

where qφ(zi|xi,yi)=N (µe,σe), pθ(zi|xi)=N (µp,σp).
To maximize Eqφ(z|x,y)[log pθ(y|x, z)] for the recon-

struction, we define the loss Lrec as the `2 loss between
clean image y and derained image ŷ as follows:

Lrec =
1

N

N∑
i=1

∑
c∈{r,g,b}

||yi,c − ŷi,c||2F , (5)

where ŷi,c = f rec
c (xi,c,yi,c, Di,c) is the CVAE associated

with the c-th channel. The CVAE takes each individual
color channel of the rainy image x, clean image y and the
rain density estimation map Dc in channel c as the inputs,
and outputs the derained image ŷc of that channel. Tak-
ing the LKL and Lrec together, we obtain the overall loss
LCVAE as follows:

LCVAE = Lrec + βLKL, (6)

where β > 0 is a regularization parameter.

3.4. Spatial Density Estimation

The rain streaks are usually unevenly distributed on a
rainy image, vary across different spatial locations. The
methods ignoring the spatial variance will inevitably gener-
ate inaccurate deraining results on the unevenly distributed
rainy images. Although global density information is con-
sidered in [36] by grading rain strength into different levels,
inaccurate deraining results are still unavoidable in local re-
gions. Specifically, since the rain streaks are usually ran-
domly distributed in the rainy image, it is difficult to locate
the rainy regions consistently.



(a) Ground Truth (b) Rainy image (c) Dr (d) Dg (e) Db (f) D̂r (g) D̂g (h) D̂b

Figure 3: Illustration of rain distributions and rain density estimation maps on the r, g, b channels, respectively. (a)
and (b) are rainy and corresponding clean images, respectively. (c), (d) and (e) show rain distributions on r, g, b channels,
respectively. (f), (g) and (h) are the generated density estimation maps for the three color channels, respectively.

We tackle the challenge by proposing a spatial density
estimation (SDE) module, and embed it into the proposed
VID method to make it spatially adaptive for deraining. By
this way, the pixels with strong rain streaks will be restored
with more emphasis, while those with weak rain streaks will
be slightly restored. Specifically, the proposed SDE module
is designed as a compact densely-connected convolutional
block with five layers [11] to learn a density estimation map
for the input rainy image, indicating the density distribution
of the rain streaks at different spatial locations. It takes the
whole rainy image as input and outputs a density estimation
map specific for each color channel.

The learning of the density estimation maps is performed
in a fully supervised manner. Specifically, we subtract a
rainy image x from its corresponding clean image y (taken
as “ground truth”), and produce a residual image denoted as
R̂. R̂c indicates a color channel in R, where c ∈ {r, g, b},
and R̂c(x) denotes a pixel value of position x on each chan-
nel. R̂c(x) = 0 indicates that there is no rain at this pixel,
while R̂c(x) 6= 0 indicates there is rain at this pixel. Based
on the residual map R̂, we generate the ground truth image
for supervised learning of density estimation maps using:

Dc(x) =

{
0 R̂c(x) 6= 0

1 R̂c(x) = 0
, (7)

where Dc is the ground truth for the c-th channel.
We plot Dc in Fig. 3 (c), (d), and (e) for the three color

channels r, g and b, respectively. As can be seen, the rain
streaks are distributed randomly across spatial locations and
the distribution patterns on three channels are very differ-
ent. The main reason is that, the light emitted from different
sources are in very different strength. Some examples are
shown in Fig. 3 can be the sunlight (first row), the white
floors (second row), and the green water (third row). We
also plot the density estimation maps learned by the pro-
posed SDE module in Fig. 3 (f), (g), and (h), for the r, g, and
b color channel, respectively. As can be seen, the density
estimation maps learned by the proposed SDE module are

close to those of the ground truth, which indicates that the
SDE module can accurately localize the rain regions for the
three color channels. Therefore, the proposed CVAE based
VID method can obtain reasonable density estimation maps
for adaptive deraining effectiveness according to the rain
strength in different regions.
Loss for SDE. The SDE module is trained in a supervised
way. It takes the whole color image x as input and generates
the density estimation maps Dc for each color channel. The
loss function of the SDE module takes the following form:

LSDE =
1

N

N∑
i=1

∑
c∈{r,g,b}

||Di,c − D̂i,c||2F , (8)

where D̂i,c = fDc (xi,c) and fDc (·) is the SDE module
associated with the c-th channel. This loss minimizes the
difference between the generated density estimation maps
and ground truth. The obtained density estimation maps are
passed to the CVAE as the inputs, which steers the CVAE
to focus more on regions with rain streaks.

3.5. Channel-wise Deraining

The bright pixels in rainy images tend to be duller if
we treat the R, G, B channels equally. This is due to that
the rain density are in different distributions for different
color channels, which has not be explored in previous de-
raining methods. With the bright channel prior (BCP) [33],
we demonstrate that the channel-wise deraining scheme can
help the proposed VID better preserve the pixel brightness
in derained images than previous methods which treat dif-
ferent channels equally.

BCP prior [33] describes an observation that in most nat-
ural scenes, at least one color channels possesses high inten-
sities for each pixel. The BCP prior is defined as

Jbright(x) = max
y∈Ω(x)

( max
c∈{r,g,b}

Jc(y)), (9)

where Jc is a color channel of image J and Ω(x) is a local
patch centered at location x. The intensity of Jbright should



be close to 1 (intensity is in [0, 1]), except in a situation
lacking light or dominated by shadow [33]. Based on the
BCP, we propose a proposition to theoretically validate the
proposed channel-wise deraining strategy as follows:

Proposition 1. Denote the B̄ and B as images derained
without and with distinguishing different color channels, re-
spectively. Then, the intensity of the pixels in B̄ is much
lower than B. That is, the number of brightest pixels in B̄
tends to be less than that in B. To be more precise, we have

||1−B||0 < ||1− B̄||0. (10)

The proof of this proposition is provided in the Supple-
mentary Files.

3.6. Optimization

The proposed VID model (3) is optimized by jointly
minimizing the negative conditional variational lower
bound (2) and the loss of the SDE module (3.4). Specifi-
cally, we formulate the objective function (11) as a multi-
task optimization problem.

Taking the losses in (6) and (8) together, we obtain the
overall multi-task loss as follows:

LVID = LCVAE + λLSDE, (11)
where λ > 0 is a regularization parameter to balance the
importance of LSDE and LCVAE. However, we observed
that we constantly obtain peak performance when we treat
them equally, i.e., λ = 1. In our VID, the SDE module and
CVAE are jointly trained by gradient decent via backward
error propagation, in an end-to-end framework.

4. Experiments
In this section, we conduct extensive experiments to

demonstrate the performance of the proposed variational
image deraining (VID) method. We also conduct compre-
hensive ablation studies to study its effectiveness.

4.1. Experimental Protocol

Implementation Details In the learning stage, we ran-
domly generate 2,000 pairs of image patches with size
64×64, from each training set. For the SDE module, we
set the filter size as s1 = 3, and the number of filters as
a1 = 16. Each convolutional layer is followed by the batch
normalization [12], and the ReLU [19] activation opera-
tions. For the last layer, we use the sigmoid activation func-
tion to make the density estimation map within the range of
[0, 1]. In the CVAE, we set the filter size as s2 = 3, and
the number of convolution filters as a2 = 16 in the encoder
and the prior network. In the last layer of the encoder and
prior network, the first half is µ and another half is σ. We
set the number of convolution filters as a3 = 1. For the
decoder, we set the filter size as s3 = 3, and the number

of deconvolution filters as a4 = 16. We set the depth as
L = 7 for encoder, decoder and prior networks, and em-
ploy Leaky ReLU [29] as activation function. Each layer is
also followed by a batch normalization layer in the CVAE.
We use the Adam optimizer [14] with default parameters, at
a weight decay of 10−10 and a mini-batch size of 32. The
initial learning rate is 0.01, and divided by 10 at each epoch.
Comparison Methods. We compare the proposed VID
method with 5 state-of-the-art deraining methods, including
Deep Detail Network (DDN) [6], Joint Rain Detection and
Removal (JORDER) [34], Density-aware Deraining (DID-
MDN) [36], and Recurrent Squeeze-and-excitation Context
Aggregation Network (RESCAN) [16].
Evaluation Metrics. Following previous works [6, 34, 36,
16], we adopt two commonly-used metrics, i.e., peak sig-
nal to noise ratio (PSNR) and structure similarity index
(SSIM) [26], to measure the performance of deraining on
the synthesized datasets. Since the real-world rainy images
have no “ground truth” images, we can only show the com-
parisons on the visual quality of derained images by differ-
ent image deraining algorithms.

4.2. Results on Synthetic Rain Removal

Datasets. We perform experiments on 3 synthetic datasets
and 1 real-world dataset. The first dataset is provided in [6]
and contains 14,000 synthesized clean/rainy image pairs.
Following the settings in [36], 13,000 images are used for
learning, and the remaining 1000 images are used for test-
ing (denoted as T1). The second synthesized dataset is pro-
vided in [34] and consists of 1,800 pairs of heavy rain im-
ages and 200 pairs of light rain images for learning. The two
sets (Rain100L and Rain100H) are used for testing (denoted
as T2). The third dataset [36] contains 12,000 synthesized
clean/rainy image pairs, which includes 4,000 heavy rainy
images, 4,000 medium rainy images, 4,000 light rainy im-
ages. The 1,200 pairs of clean/rainy images for testing are
denoted as T3. As far as we know, this is the first work that
conducts experimental evaluation on all these three datasets.
SSIM and PSNR. The quantitative comparisons are re-
ported in Table 1. Our VID method substantially exceeds
previous methods on all three datasets. In particularly, on
T1, our method outperforms the second best method by 4%
and 3.6 in terms of SSIM and PSNR, respectively. The su-
perior performance demonstrates the great effectiveness of
our method for single image deraining.
Visual Quality. In Fig. 4, we show the comparison of the
visual quality of different methods. It can be seen that, our
VID method produces removes rain streaks more clearly,
and preserve better image details than previous methods.

4.3. Results on Realistic Rain Removal

We also apply the proposed VID on removing the rain
streaks in real rainy photographs. The proposed CVAE



Rainy 0.5602/20.27 LP [17] 0.8312/24.32 DDN [6] 0.8736/26.89 JORDER [34] 0.8640/25.52

DID-MDN [36] 0.9231/29.98 RESCAN [16] 0.9125/29.32 VID 0.9355/31.19 (Ours) Ground Truth

Rainy 0.3780/23.43 LP [17] 0.6013/23.16 DDN [6] 0.6283/25.66 JORDER [34] 0.7804/28.89

DID-MDN [36] 0.7574/26.76 RESCAN [16] 0.8279/29.79 VID 0.8799/30.27 (Ours) Ground Truth
Figure 4: Comparisons of derained images by different methods on synthetic datasets [6] and [34].

Dataset Input LP [17] DDN [6] JORDER [34] DID-MDN [36] RESCAN [16] VID (Ours)
T1 0.7695/19.31 0.8312/24.35 0.8851/25.63 0.8405/22.36 0.9092/26.07 0.8812/25.45 0.9325/28.73

T2
L 0.8332/23.52 0.8253/24.14 0.8494/25.84 0.8835/28.32 0.8725/27.13 0.9058/29.17 0.9343/32.10
H 0.3702/12.13 0.5444/14.26 0.6928/22.26 0.7382/23.45 0.7315/23.25 0.8458/26.45 0.8721/27.89

T3 0.7781/21.15 0.8514/25.23 0.8978/27.33 0.8622/24.32 0.9087/27.95 0.8712/26.19 0.9326/30.82

Table 1: Quantitative comparison of different methods in terms of SSIM and PSNR(dB) on synthesized test datasets
D1 [6], D2 [34], and D3 [36]. The terms “L” and “H” denotes the “Rain100L” and “Rain100H”, respectively.

based VID model is learned on the dataset used in DID-
MDN [36]. We use the rainy images in [35], including 4 dif-
ferent representative scenarios (shown in Figs. 5 (a)): light
rain, medium rain, heavy rain, and snow (from top to bot-
tom). As shown in Figs. 5 (b)-(f), the proposed VID out-
performs all previous methods on real rainy images. More
results can be found in the Supplemental File.

4.4. Ablation Study

We conduct more detailed ablation studies of our pro-
posed VID on image deraining. We assess the effective-

ness of 1) the CVAE model, 2) the SDE module, and 3) the
channel-wise scheme. DDN [6] is employed as baseline.

1) CVAE model. As shown in Table 2, the perfor-
mance of channel-wise CVAE is 0.9154/30.14dB on
SSIM/PSNR, much better than that of channel-wise DDN
(0.8763/28.19dB), demonstrating the effectiveness of the
proposed CVAE based method for image deraining.

2) SDE module. We can see in Table 2 that both Channel-
wise DDN with SDE and VID perform much better
than channel-wise DDN and channel-wise CVAE (without
SDE), which verifies the effectiveness of the SDE module.



(a) Rainy Image (b) DDN [6] (c) JORDER [34] (d) DID-MDN [36] (e) RESCAN [16] (f) VID (Ours)

Figure 5: Comparisons of derained images by different methods on real-world rainy images from the datasets [35].
We choose four types of rainy image, which include representative scenarios: light rain, medium rain, heavy rain, and snow
respectively from top to bottom.

DDN [6] Channel-wise DDN Channel-wise DDN + SDE Channel-wise CVAE VID (Ours)
Channel-wise 8 3 3 3 3

SDE 8 8 3 8 3

CVAE 8 8 8 3 3

Rain100L 0.8494/25.84 0.8763/28.19 0.8913/29.23 0.9154/30.14 0.9343/32.10
Rain100H 0.7270/22.95 0.7637/24.39 0.7817/26.11 0.8332/26.35 0.8721/27.89

Table 2: Quantitative comparisons of different variants in terms of SSIM and PSNR (dB) on dataset T2 [34].

3) Channel-wise deraining. From Table 2, it is easy to see
that the baseline DDN is dramatically improved by conduct-
ing channel-wise deraining. This clearly demonstrates the
advantage of channel-wise deraining over methods that do
not distinguish color channels during deraining.

5. Conclusion

In this paper, we proposed to tackle image deraining
in the conditional variational auto-encoder (CVAE) frame-
work. CVAE models the latent distributions of image pri-
ors, from which the clean images are generated for image
deraining. Moreover, we introduced a channel-wise scheme

to achieve the image deraining more adaptive in different
color channels. A spatial density estimation module is de-
veloped to achieve spatially adaptive deraining performance
on uneven rainy images. Experiments on both synthetic and
real-world datasets show that our method achieves superior
performance to previous state-of-the-art deraining methods.
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